Cleverscrint

Welcome to the Cleverscript Manual and Tutorial. This manual will show you how to create a very
clever script in a spreadsheet. You can follow it in order, or dip in and out, or just leave the
advanced examples till later. Within just a few minutes, you'll be able to have a chat with your very
own bot. By the end, they will be very powerful and complex. The fifth section includes a basic
informational bot and game bot. The sixth section explains how to integrate some small-talk into
your Cleverscript, based on the intelligence behind Cleverbot. The last section introduces our
website and API. Visit www.cleverscript.com to get started.

Contents

Section 1 — Inputs and outputs

Example 1.1 — Repetitive Bot

Example 1.2 — Hello and Sorry

Example 1.3 — An Interesting Discussion about Peas
Example 1.4 — One Line Input/Outputs

Section 2 — Phrases

Example 2.1 — Lots of Hellos

Example 2.2 — Introducing Phrases

Example 2.3 — Rapidly Expanding Phrases

Phrasing Guidelines

Example 2.4 — Output Modes and Capitalisation
Advanced Example 2.5 — Output phrases

Advanced Example 2.6 — Percentages within Phrases
Advanced Example 2.7 — Optional Phrases and Text
Advanced Example 2.8 — Unimportant Phrases
Advanced Example 2.9 — Wildcards

Section 3 — L.earning

Example 3.1 — Basic Learning

Example 3.2 — Learning from Input

Example 3.3 — Using What You've Learned

Internal Variables

Example 3.4 — Learning Multiply and Mathematically
Example 3.5 — Learning Shortcut in Phrases
Advanced Example 3.6 — Calculating and Overloading
Advanced Example 3.7 — Learning with Wildcards
Advanced Example 3.8 — Dynamic Variables, Arrays and Temporary Variables
Advanced Example 3.9 — Parameters

Advanced Example 3.A — Learning from Phrases

Section 4 — If Conditions

Example 4.1 — Conditional Outputs

Example 4.2 — Debugging and Blanks

Advanced Example 4.3 — Complex Conditions
Advanced Example 4.4 — Variables in Ifs and Learns

1 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/
http://www.existor.com/

Section S — Structure

Example 5.1 — Multiple Gotos

Example 5.2 — Dynamic and Unhandled Gotos — Informational Bot
Example 5.3 — Dynamic Phrase Labels

Example 5.4 — Conditional Inputs — Game Bot

Example 5.5 — Output Borrowing

Example 5.6 — Conditional Outputs

Example 5.7 — If and Learning Summary

Structural Approaches

Section 6 — Clever Data for Small Talk

Example 6.1 — Clever Data Fallback

Example 6.2 — Clever Data Variables

Example 6.3 — Reactions and Emotions

Advanced Example 6.4 — Influencing Clever Data

Advanced Example 6.5 — Influencing Clever Data Even More

Section 7 — Filtering
Example 7.1 — Input Filtering to Remove Text

Example 7.2 — Filters Between Inputs
Example 7.3 — Input Filtering to Replace Text
Example 7.4 — Output Filtering

Section 8 — Testing and Using Your Bot
8.1 — Register and Login

8.2 — Manual

8.3 — Upload Your Spreadsheet
8.4 — Chat to Your Bot

8.5 — Buy Credits

8.6 — Publishing

8.7 — Javascript API

8.8 — Usage Statistics

8.9 — Android and 10S APIs
8.10 — Self Hosting

2 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 1 — Inputs & Qutputs
This section will guide you through setting up your very first (second and third) bots. A “bot” is
what we call the artificial entity which you will be creating and chatting with. It's short for “robot”.

Example 1.1 — Repetitive Bot
Start Excel or Open Office or Numbers or Google Docs or whatever spreadsheet software you
prefer, and type the following column headings:

Column A: Type
Column B: Label
Column C: Description
Column D: Text
Column E: If

Column F: Learn
Column G: Goto
Column H: Accuracy

The minimum which any bot needs is a single output start line. The output start is what the bot says

to you at the very start of a conversation. Add a single row to your spreadsheet with some 7ext for
the bot. Like this:

Type Label Description Text If |Learn |Goto Accuracy

output start|welcome | The first thing | Hi there, I'm
the bot will say. |your very first
repetitive bot!

Your bot will only know how to output one thing: “Hi there, I'm your very first repetitive bot!”” So
that's what it will say at the beginning of your conversation. Then it will wait for your reply. And
whatever you say, it will repeat its single line. The conversation will quickly get boring, but it's a
start.

To try this for yourself, save your spreadsheet as a tab delimited file. It is very important that it
uses tabs and not commas as a delimiter. Depending on your spreadsheet software, the file ending
may be txt (when using Google Docs), tsv (some versions of Microsoft Office) or csv (OpenOffice).
See section 8.3 of this manual for instructions on converting your spreadsheet into tab-delimited
format.

If you have any non-Latin characters in your spreadsheet, please save with the character encoding
UTF-8. A limited number of other encodings are accepted, but UTF-8 is the easiest to handle. Then
login and register at www.cleverscript.com, upload your spreadsheet, check for any errors and start
chatting to your new bot. This process is fully described in the last section of this manual.

Important points:
* all bots must have an output start, it's the first thing the bot will say
* save your spreadsheet as a tab delimited file with character encoding UTF-8
* register and login at www.cleverscript.com and upload your spreadsheet
» all Cleverscript outputs are limited to 255 characters maximum length

3 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/
http://www.cleverscript.com/
http://www.existor.com/

Example 1.2 — Hello and Sorry

This example will show you how to give a different output depending on the user input. The input is
what you say back to the bot. Creating a bot involves predicting the different things the user might
say and responding appropriately. Add the two inputs and two extra outputs below, and try to figure
out what they do:

Type Label Description Text If [Learn |Goto Accuracy

output start|welcome | The first thing |Hi there, I'm
the bot will say. |your second
apologetic bot!

input hello The user says hello hello_back |75
hello
input anything | Anything else anything sorry 0

output hello_back | The bot says Hello to you
hello back to the |too.

user.

output sorry Bot apologises | Sorry, I don't
for not knowing |have a response
what to say. for that.

After your bot outputs its starter “Hi there, I'm your second apologetic bot!” it will wait for your
reply. It will then compare your input with its two input lines. If you say something 75% similar to
the 7ext “hello”, then the bot will Goto the output labelled hello back. Or else, if you say something
0% similar to the 7ext “anything”, it will go the output labelled sorry.

The Accuracy column determines how accurate your prediction needs to be. If you set the accuracy
of the input to 100%, then only the exact word “hello” would match. If you set it to something
really low like 20% then all sorts of things, like “heeeeelelllllloooo” would also match. 75% allows
for some typos and mistakes so “helloo” would also match. Note that upper and lower case and any
punctuation marks at the end are ignored when making string comparisons.

The 0% on the second input means it will match anything else. So anything not 75% similar to
“hello” will Goto the output labelled sorry.

If you removed the input labelled anything and then gave nonsense input to the bot, it wouldn't
know what to do, so it would just go back to the beginning and repeat “Hi there, I'm your second
apologetic bot!” That's essentially what was happening in the first example. The bot was saying its
only line, waiting for the input, not making any sense of it, and so going back to the output start and
repeating “Hi there, I'm your very first repetitive bot!”

Important points:
* input lines match user inputs
* upper and lower case and trailing punctuation marks are ignored when comparing text
* the Accuracy column determines how accurate the match must be
» if'you leave the Accuracy blank, it defaults to 75%
* the Goto column tells the bot which output to go to after a successful match

4 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 1.3 — An Interesting Discussion about Peas

This example starts to create a proper conversational script, where the input depends on the output
and the output depends on the input. The lines labelled anything and sorry are not shown this time
(for brevity) and two new inputs and outputs have been added:

Type Label Description Text If | Learn | Goto Accuracy
output start| welcome | The first thing |Hi there, I'm your
the bot will say. |third pea-crazy bot!
input hello The user says | hello like peas |75
hello
output like peas |The botasksa |Do you like peas?
question
input peas_yes User says yes | Yes peas yes |20
input peas_no User says no No peas_no 20
output peas_yes |Bot agrees Great! Me too!
output peas_no Bot disagrees | That's a shame.
output blank input | Reply to blanks. | I can't hear you.

In this case, when the user (you) says “hello”, the bot goes to the output labelled /ike peas and asks
“Do you like peas?” This output line has two of its very own inputs for peas_yes and peas no. If
you reply “Yes” with only 20% accuracy, the bot will go to its output labelled peas yes. And if you
say “No”, it will go to peas no.

The order in which the inputs and outputs appear in this spreadsheet is very important. The input
labelled hello appears under an output start, therefore it is always active. No matter where you are
in the conversation, you can say “hello”, and the input labelled hello will take over and direct you to
the output labelled like peas.

However, the inputs labelled peas_yes and peas no do not appear under the output start. They
appear under the normal output labelled like peas. Therefore, they are only active after the bot says
“do you like peas?”. If you say “Yes” after the bot says “Hi there I'm your third pea-crazy bot!” or
“That's a shame”, it will not be matched, and the bot will repeat its opening line (or would have said
“Sorry I don't have a response for that” if we had left that in).

This allows you to build a bot with a branching structure, as shown in the digram below. In
summary inputs under an output start are always active, but inputs under a normal output are not.
They belong to a specific output and are only active just after the bot has said that output.

Note that 20% is a low accuracy. It means that anything remotely resembling Yes, such as “Yeah
dude” will match. And the same for “Not really”. Only if you say something really different like
“You gotta be kidding.” will neither match, and the bot will return to its starting line. The danger
here is that inputs like “none of your business” will produce false matches (26% match to “No”).
Fortunately, Cleverscript has a great way to deal with this, starting from the next example.

This example also shows that an input and an output are allowed to have the same label. In fact, the
Goto is unnecessary in this case. If there is no Goto the bot will look for an output with the same
label as the matched input.

Otherwise, the labels within the bot must be unique. That's why I didn't just label the “Yes” input

5 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

and output as yes. There might well be another yes/no question later on in the spreadsheet, and the
bot would then get confused.

Blank inputs:

If you send the bot a blank input, it will return to the output start and restart the conversation. You
can override this by providing an output labelled blank input. If it is provided, it will be used
instead of going back to the start.

Note that spaces and punctuation are stripped from the user input before it is processed. So typing a
few spaces or ... or just !?! is also considered a blank input. The input must contain at least one
letter or number to be processed.

Diagram:
Below is a digram of this bot's structure. It shows how the outputs and inputs are connected
together. Diagrams like this are useful for planning bots.

Hi there, I'm your
third pea-crazy bot!

hello anything else

"'\'
Do you like peas? J

yes no

o

N
Great! Me too! That’s a shame! J

6 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Important points:

inputs following (in the spreadsheet) an output start are always active

inputs following (in the spreadsheet) normal outputs are only active when the bot has just
said that output

the bot will favour inputs below outputs if it has a choice (when both inputs match their
minimum accuracies)

if two inputs produce the same score, the bot will choose the one with the higher accuracy; if
the accuracies are also the same, it will choose the first one

inputs without a Goto go to an output with the same label

otherwise the Label should be unique

provide an output labelled blank input to handle blank inputs, or else the bot returns to the
output start

7 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 1.4 — One Line Input/Outputs

In November 2014 we added a new and simpler format for simple bots. You can now specify a Type
of inout, and then put the input and output on the same line. The input text goes in the repurposed
Description column, and the output text goes in the 7ext column.

Type Label Description/input text | Output text If |Learn |Goto |Accuracy
output start| welcome | The first thing the bot | Hi there, I'm your
will say. fourth basic bot.
inout Hello. Hello back. 75
inout How are you? Fine thanks. 75
inout Anything else. Sorry, I don't 0
understand.

As you can see inouts don't even need a Label, though you can provide one if you would like.

Over the next 60+ pages, you will learn many new and wonderful things, including how to add
phrases, set variables, do maths, use wildcards, and much more. /nouts support all of these things.

In most respects, Inouts behave like outputs. They treat their If, Learn, Goto and Mode columns as
an output does. Their only input like behaviours are the input text in the Description column and the
Accuracy.

Important points:
* inout lines allow you to have inputs and outputs in the same line on the spreadsheet
* they use the Description column for the input text
* they have an Accuracy relating to the input text
* otherwise, they behave like an output
* they do not need a Label

8 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 2 — Phrases

The peas bot is very fussy at first — it only accepts the word “hello” and minor variations thereof.
After the peas question it gets very lax — accepting almost anything that starts with “y” or “n”. This
section shows how to quickly and vastly expand the words that a bot will recognise.

Example 2.1 — Lots of Hellos

There are many ways to say “Hello” in English, such as “Hi” and “Hiya” and “Hi there”. We want
the bot to recognise all of them. To do this, insert extra lines into your spreadsheet and add the
different variations to the 7ext column. This example is based on the first or second bots we created.

Type Label Description Text If | Learn | Goto Accuracy
output start| welcome | The first thing | Hi there, I'm your first
the bot will say. |bot of slightly greater

understanding.
input hello User says hello |hello hello back |60

hi

hiya

hi there
output hello_back | Bot replies Hello!

This is a very simple bot. If it recognises one of those four greetings it will say “Hello!” or else it
will go back to its starting output.

Note that the Goto and Accuracy refer to the input as a whole, not to the individual bits of text. The
60% applies to all four of the variations. So this will also recognise things like “hiy” because it
matches 74% to “hiya”.

An alternative format for this is to put all the 7ext in a single row of the spreadsheet and separate the
different variations with a /. This allows you to keep the entire input in a single row, but means the
Text column might get wide and unreadable. You must put spaces around the /, so it doesn't get
confused with a normal slash. Here's an example:

input hello User says hello |hello/hi/ hiya/ hi there hello_back | 60

Important points:
* the 7ext column can spread over several rows in your spreadsheet
* when using this technique, all other columns should be blank
* alternatively you can have several variations in the same row, separated by /

9 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 2.2 — Introducing Phrases

This example introduces one of Cleverscript's Unique Selling Point — the main reason why it is so
powerful. It extends upon the example above in a simple but elegant way. We call them phrases.
Here is an example:

Type Label Description Text If |Learn | Goto Accuracy
output start| welcome | The first thing | Hi there, I'm
the bot will say. |your second
phrases bot!
input user_hello | User says hello | ((hello)) hello _back |60
((hello)) there
output hello_back | Bot replies Hello!
phrase hello My first phrase | hello
hi
hiya
hey

Notice that the input hello only has two variations now: “((hello))” and “((hello)) there”. The double
parentheses enclose a phrase. This phrase is specified at the bottom of the spreadsheet. It contains 4
variations: hello, hi, hiya, hey. Note also that I renamed the input to user hello so that it wouldn't
conflict with the phrase labelled hello.

The input line can now recognise a total of 8 different things: hello, hi, hiya, hey, hello there, hi
there, hiya there, hey there.

Phrases are so powerful because they are multiplicative. In this case, 2 variations (“((hello))” and
“((hello)) there”) times 4 variations (hello, hi, hiya, hey) makes 8 total possible variations. But this
is the tip of an iceberg. Phrases can contain other phrases, and can even refer back to themselves.
It's very easy to build up to millions of variations, and the bot will still process them quickly and
efficiently. The next example shows is more filled out.

Important points:
* inputs can refer to phrases
* phrases are specified by putting the word “phrase” in the 7ype column
* phrases are referred to using double parentheses, such as ((hello))
* phrases multiply the number of variations that a bot can recognise

10 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 2.3 — Rapidly Expanding Phrases
This is a longer example of phrases, showing how they multiply, and how they can be used for
output as well.

Type Label Description Text If | Learn | Goto | Accuracy
output |welcome | The first thing |Hi there, I'm your third
start the bot will phrases bot!
say.
input asks name |User asks for |((what is)) your name? 40
bot's name

((what are)) ((you)) ((called))?

Who are ((you))?

output |asks name |Bot replies My name is ((bot_name)).

I am called ((bot name)).

I 'am ((bot_name)).

((bot_name)).

phrase |what is ((what)) is
((what))'s
((what))s
phrase | what are ((what)) are
((what))'re
((what))re
phrase | what what / wot / wat / whaat
phrase |you you/u/ya
phrase |called called / named 100
phrase |bot name Evie

Your bot will now respond to anything from “What is your name?” to “Wot're u called?” and “who
are ya?”. In fact, it will accept 87 variations of input, along with anything else that is 40% similar to
one of those 87 variations.

That is computed like this: The input labelled asks name can accept 12 variations for “((what is))
your name?”” made of up 3 variations for ((what is)) * 4 ((what)). Along with 72 for “((what are))
((you)) ((called))?”’: 3 variations of ((what are)) * 4 ((what)) * 3 ((you)) * 2 ((called)). And a further
3 for “who are ((you))?”

This example also introduces variations for the output. Unlike on input, case and punctuation are
not ignored for output. The output asks name has 4 variations, each referring to the phrase labelled
bot_name. bot_name has no variants. It is just a placeholder. So if you wanted to change the bot's
name to Linda or Bartholemew, you only need to make the change in one place.

With 4 variations to choose from, the bot's default behaviour is to choose the one most like the
user's input. This sort of imitation helps to produce a more realistic conversation. So if you ask
“What is your name?” it is likely to reply “My name is Evie.” If you ask “What are you called?”,
the bot will reply “I am called Evie.” This behaviour can be modified, and will be explained in a

11 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

later example.

This example also lacks any Gotos. The input labelled asks name maps directly to the output
labelled asks name. It uses an Accuracy of just 40% to give an even wider range of accepted inputs.

This example also shows the Accuracy being used on a phrase as well. The phrase labelled
((called)) must match 100%. So “what are you callled?” will not work but “what arre you called?”
will. This is useful when some part of the user's input must match really well, such as a password.
When the column is left empty, the default accuracy for phrases is 30%.

This bot is called Evie in honour of the bot at www.existor.com. That bot is powered by a script to
answers questions about Existor (such as “what is your phone number?”’) combined with some
general chatting ability borrowed from www.cleverbot.com.

Important points:
* phrases can contain other phrases
* phrases can have an Accuracy requirement just like inputs
* phrases can also be used within outputs
» if there are multiple variations, the bot chooses the output closest to the input

12 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverbot.com/
http://www.existor.com/
http://www.existor.com/

Phrasing Guidelines

Phrases are very flexible. They can be used to represent and parse any language. So before
embarking on a complex bot it is useful to have some guidelines and standards for labelling phrases.
Below are our suggestions.

Synonyms

Phrases are easiest to use and understand as groups of synonyms. For example, the words “bike”
and “bicycle” are almost always interchangeable. So it makes sense to have a phrase labelled
((bicycle)) containing: bicycle / bike. It's also useful to add common mis-spellings and typos like
“bycycle”.

Synonyms in context
However, very few words are exact synonyms of each other. If phrases only contained synonyms
and typos they wouldn't be very practical.

Usually words have overlapping meanings. For example, a “pet” is almost always an “animal”, but
an animal is not always a pet. Some words are quite broad, a “boat” can be a yacht, ferry, ship,
paddle steamer or rowboat. Others are more specific, like “yacht”.

So it depends on the context. If you are creating a bot for a fantasy adventure game, then ((boat))
can safely be quite broad. But on a website selling boat parts, it should be more specific.

This is the main difficulty in creating generic libraries of phrases which can be used by any bot. The
breadth of the phrases depends on the context of the bot.

A rule of thumb is that the closer a phrase is to the bot's main purpose (a character in a fantasy
game, or selling boat parts) the narrower it should be. Phrases less related to the bot's purpose can
be much broader.

Most specific

Sometimes some words are unnecessary. For instance, you can say “I've got to go” or just “Got to
g0”. There are many statements like this where the “I've” or some other part of it is not always
needed.

In these cases, your phrase should be as long and specific is possible. In other words, your phrase
should be labelled ((I have got to go)) instead of ((got to go)). Then there is less confusion over
what it actually means, and the longer phrase can contain the shorter phrase.

So the phrase ((I have got to go)) can contain: ((I have)) ((got to go)) / ((got to go)). It will work
with or without the ((I have)). To complete the example, ((I have)) would contain: I have / I've. And
((got to go)) would contain: got to go / gotta go.

In other words, the phrase label is best as the most clearly expressed way of completely describing a
meaning, which will often be a longer word or phrase, yet at the same time you want it to be a
common-enough way of expressing that meaning so as to feel natural, and not stilted, when reading
a complete sentence.

Types of things
A bot for an online pet shop might begin by asking “What type of pet do you have?” In this case, it
is more logical for the corresponding input to be “I have a ((pet_type))” rather than just “I have a

((pet))”.

13 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

The ((pet_type)) phrase can then contain: dog / cat / horse / ferret / gerbil / camel / etc. The ((pet))
phrase should be reserved for words that are rough synonyms of the word “pet”, such as: pet /
animal / creature.

We therefore recommend that phrases containing types or lists of things should end in _type. So
((colour_type)) could contain: blue / red / green / yellow / etc. Whereas ((colour)) contains: colour /
color / hue / tint.

An alternative to _type is _list. We tend to use _list for lists of things the bot knows about. For
example, an informational bot on a website may be able to talk about 20 things. We would put those
20 into a ((topic_list)) phrase. In the colours example, ((colour_type)) might contain a list of all (or
lots of) colours, whereas ((colour _list)) contains just the colours that the bot can talk about.

Multiple Definitions

Many words have several distinct definitions. For example ((pet)) can be a noun as above, or a verb
meaning “to stroke”. This usually doesn't cause an issue, as the context of the bot will determine
which definition is in being used.

If you are creating a bot to go on a pet care website though, you might need to refer to both. In these
cases, we recommend that the phrase ((pet)) refers to the most common usage, probably as a noun
in this case: pet / animal / creature / etc.

Less common usages can be labelled with a suffix, such as ((pet_stroke)). A better idea however
would be to have a phrase called ((stroke)) to cover that meaning.

Some words have dozens of definitions. According to an online dictionary, the word “set” has 119
distinct definitions, including 64 as a verb and 29 as a noun. Many of these are related, so the
situation isn't quite that bad, but it does mean that there may not be a most common usage. Putting
all the meanings of “set” into ((set)) wouldn't be right either. The purpose of phrases is to
distinguish meaning not blur it. Either way (referring to the most common usage, or including all
meanings) labelling the phrase as simply ((set)) would be confusing.

In these cases, you could put a suffix such as ((set_put)), ((set_fix)), ((set_decide)), ((set_tennis)).
Though again it might be less confusing to use alternative labels: ((put)), ((fix)), ((decide upon))
and ((tennis set)). But ((put)) also has many definitions, so at some point suffixes will be necessary.

If you needed even more specificity, you could decide upon a dictionary to use, and then have
phrase labels like ((set_nounl)) which means the first noun definition of the word “set”. Though
going down this route will involve lots of looking up words.

Prepositions
Prepositions also have multiple definitions, and they can be synonyms for each other in different
situations. For example, “I would like to talk with you”. The “with” here could be “with” or “to”.

To accommodate this, you can either use the multiple definition technique above, such as
((with_to)) which contains: with / to. Or ((to_with)) containing: to / with. Or you can include the

ambiguity in a longer phrase and have ((talk with)) containing: ((talk)) with / ((talk)) to.

Fortunately, most prepositions are very small, so even if you ignore this issue entirely, your phrases
will probably still work if the Accuracy is set low enough.

14 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Bot preferences

You can also store your bot's preferences and properties in phrases. We recommend phrases labelled
like ((bot_name)) to keep the bot's name and ((bot_colour)) to store their favourite colour. It is
useful to have these as phrases so that if you need to change them, the change is only made in one
place, as in the example above.

The prefix bot_is needed as the phrase ((colour)) is for synonyms of “colour” as above. Prefixing
them all with bot also helps to keep them together mentally and in the spreadsheet.

Remembering it all

As a bot grows, it can be difficult to remember what phrases you have used, especially if more than
one person is involved in creating the bot. For example, you may not remember whether to use
((set_place)) or ((place_put)) in your phrases.

In this case, you can either:
* search your spreadsheet for previous usage (you can usually tick a box to “match entire cell
contents” to make this easier)
» store all your phrases alphabetically so they are easy to look through
* create a new phrase anyway and see if there are warnings or errors when you upload (not
really recommended)

The easiest method is probably to list your phrases alphabetically. To help with this, you could keep
your phrases in a separate spreadsheet (separate from your inputs and outputs) and use only / as a
separator (instead of multiple lines). Then you can easily add new phrases to the end and use the
spreadsheet software's Sort facility. This is also very useful if you want to use the same set of
phrases with several different bots.

Important points:
* phrases are like groups of synonyms
* how broad the groupings are depends on the context of the bot
* phrases closer to the context or goal of the bot generally have a narrower focus
* use the longest and most specific variation for your phrase label
* use _type for phrases that contain types of things, such as ((pet_type))
* when a word has multiple definitions add a suffix to differentiate, such as ((set_put))
» prefix bot properties and preferences with bot , such as ((bot_name))
* put phrases in a separate spreadsheet, one on each line using / to separate the variations
» this allows phrases to be easily sorted to help in looking things up

15 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 2.4 — Output Modes and Capitalisation
When your bot replies, it chooses the response most similar to the user's input. In the previous
example, when you asked “what is your name?”, it replied “My name is Evie.” This output Mode is

9 ¢ 9% ¢

called “most like input”. There are six other output Modes: “random”, “random, same”, “random,
9% ¢¢

different”, “in order”, “in order, repeat last” and “first”. To use this feature, you need to add a new
column after Accuracy for the Mode.

Type Label D |Text If | Learn |Goto|Acc |Mode

output start welcome Hi there, I'm your
fourth phrases bot! |
demonstrate modes
and capitalisation.

input friendly ((hello)) 30
((hello)) there
output friendly ((Hello)). in order
((Hello)) to you.
phrase hello hi / hello / hey / hiya random, different

When you greet this bot, it will cycle through the output labelled reply in order, first saying
“((Hello))” and then “((Hello)) to you.” and then back to “((Hello))” etc. But it will output the
((Hello)) randomly. So if you keep saying “hello”, it will give replies like “Hi”, “Hey to you.”,
“Hiya”, “Hi to you.”, etc.

The output Mode “random, same” gives a random output the first time and then says the same thing
in subsequent interactions, and “random, different” gives random, but different each time until it
uses up all the choices and then restarts. The output Mode called “in order, repeat last” is the same
as “in order”, but it won't go back to the beginning. It will keep repeating the last one. If both the
Modes above were “in order, repeat last”, then the bot would reply “Hi”, “Hello to you.”, “Hey to
you” and then keep repeating “Hiya to you.” The mode “first” always outputs the first one.

The output Mode still works with If conditions, cycling through the matching ones as above. If none
of the conditions match, it outputs nothing or the phrase unhandled_ifs (behaviour changed October
2014 to help debugging). You can also shorten the Mode to m for “most like input”, » for “random”,
s for “random, same”, d for “random, different”, i for “in order”, / for “in order, repeat last” or f for

“first”. If no Mode is provided, then “most like input” is used, as in the previous examples.

Notice the capital H in ((Hello)). It tells the bot to capitalise whatever word eventually gets output.
This means that the same phrase can be output at the beginning or the middle of a sentence. If at the
beginning, refer to it with ((Hello)). If in the middle, use ((hello)). At all other times, phrase labels
are case-insensitive, meaning that upper and lower case don't really matter.

Important points:
* The output Mode goes in the new Mode column and applies to outputs and phrases

2% ¢ 29 <¢ 29 ¢

* It can be either: “most like input”, “random”, “random, same”, “random, different”, “in
order”, “in order, repeat last” or “first”. If blank, the default is “most like input”

* You can shortenittom,r,s,d, I, 1 orf.

» Ifall ifs are false, it returns a blank or the phrase unhandled_ifs

* All Modes are reset when the bot returns to its output start

* Capitalise the first letter of a phrase reference to force its output to be capitalised

16 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 2.5 — Output Phrases
The next few examples discuss more advanced phrasing techniques. Feel free to skip to the
Learning section and return here later.

The previous two examples demonstrated using phrases in outputs. This is an easy way to add
variation to the output, so that the bot doesn't always say the same thing. It is also convenient to use
the same phrase for input and output, as in the ((hello)) in the previous example.

However, there may arise a situation where you don't want to reuse the same phrase for input and
output, but it would be confusing to give them separate labels. In this case, you can change the Tipe
to output phrase. Output phrases are exactly like phrases but they are only used for output. Like
this:

Type Label D |Text If |Learn |Goto Accuracy | Mode
output start welcome Hi there, I'm your
fifth output phrases
bot!
input friendly ((hello)) hello_you |30
((hello)) there
output hello_you ((Hello)). in order
((Hello)) to you.
phrase hello hi / hello / hey / hiya
output phrase |hello hello

This is exactly the same as the example above, except now the bot will only ever say “Hello” and
“Hello to you”. It will still recognise “hi”, “hello”, “hey” and “hiya” but will be more formal in its

reply.

Output phrases are also necessary if you want the same phrase label to have a Learn on input, but
Ifs and Learns on output. Normally that wouldn't be allowed. If you tried that, then when the phrase
was used for input, only the first part of the first Learn would be considered, and the /fs and
subsequent Learns would be ignored.

You can achieve the same effect but just having different phrase labels for your input and output
phrases, but it feels more natural and logical to tie them together.

Important points:
* usually phrases can be used for both input and output
* output phrases are phrases that are only used for output
* you can have a phrase and an output phrase with the same label

17 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 2.6 — Percentages within Phrases

You can use percentages within phrases to more subtly express how words relate to each other, how
close the synonyms actually are. For example, the words “tree” and “shrub” are often
interchangeable, as in “what a lovely tree” and “what a lovely shrub”. But not always, “monkeys
live in trees” but not “monkeys live in shrubs”.

If you were creating a nature-loving bot, you might need to use the words “tree” and “shrub” a lot,
so you'd probably want to put them in the same phrase. But you would still want to reserve the right
to tell them apart once in a while. This example demonstrates how you can make a “shrubs” be 80%
like “trees”.

Type Label Desc | Text If | Learn |Goto | Accuracy
output start| welcome Hi there, I'm your sixth phrases

bot! I like percents.
input like trees Do you like ((trees))? 30
input monkey trees Do monkeys live in ((trees))? 30
input monkey shrubs Do monkeys live in ((shrubs))? 30
output like trees Yes I love them about

$accuracy$%.
output monkey _trees Yes they do.
output monkey shrubs No they don't.
phrase trees trees

80% shrubs
phrase shrubs shrubs

80% trees

The way to specify that “shrubs” are 80% like “trees” is to put the percentage in front of the word as
above.

If you ask this bot “do you like trees?” it will reply “Yes I love them about 100%.” If you ask “do
you like shrubs?” it will give the same reply, but with only about 98% accuracy, because the word
“shrubs” only matched 80% but the rest of the sentence matched exactly. So in the context of
whether the bot likes them, “trees” and “shrubs” are very similar.

But in the other context of monkey habitation habits, “trees” and “shrubs” are not interchangeable.
So if you say “do monkeys live in trees?”, the input labelled monkey_trees will have a higher
accuracy, and the bot will reply “Yes they do.”

What the percentages actually mean:

The actual percentages you assign are highly subjective, and only matter relatively. In other words,
all that matters is that “shrubs” are less tree-like than “trees”. The exact number you put isn't very
important.

However, it is possible to view it more logically. From a language perspective, we are saying that
“shrubs” only belong 80% to the concept of “trees”. Imagine something this is only 1% like a tree,
such as a blade of grass. It's a plant which grows upwards so has a tiny amount of tree-like
properties. Then try to judge where a shrub fits on the scale of grass-to-trees — 80% seems about

18 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

right. This is still very subjective but now has some vaguely justifiable basis.

You could also approach it by trying to think of a word that is 0% like a tree, such as “interstellar”
or “slowly”. These words are not even nouns. Then imagine where a shrub fits on the scale of
interstellar-trees — maybe around 99.9%. Even a blade of grass might come in at 99%. In fact, doing
it this way, all the things in the ((trees)) phrase would be in the high 90s. The problem with this
approach is that it leaves far less room for differentiation. In fact, it becomes impossible because the
percentage has to be a whole number without a decimal.

The actual calculation which Cleverscript uses is similar to the grass-to-trees scale. It assumes that
everything in the ((trees)) phrase already shows some resemblance to trees. When it comes across a
percentage it adjusts the final accuracy score by something like: (a fraction) * (percentage provided)
* (length of matched word “shrubs”™) / (length of whole sentence).

Important points:
* put a percentage in front of a phrase variation to express “belongingness”
* use percentages to distinguish between words that are similar but not exactly the same
* the actual percentage you use is subjective and relative
* but if you prefer something more concrete, imagine something that belongs only 1% to the
phrase and use that as a scale to judge what each percentage should be

19 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 2.7 — Optional Phrases and Text

You can make phrases optional by adding a ? to the phrase reference, such as ((?please)). You can
also do this with normal text using single parentheses, such as (?thanks). In this case, “thanks” is
not a phrase, and a phrase labelled thanks doesn't need to exist.

Type Label Desc | Text If | Learn |Goto | Accuracy
output start | welcome Hi there, I'm your seventh
phrases bot! I demonstrate
optionals.
input tell_ me ((?please)) tell me something 30
((?please)) (?thanks)
output tell me You are great.
phrase please please
pretty please
would you ((please))

You can be ultra polite to this bot. You can say “please tell me something would you pretty please
thanks” and it would match 100%, as would just “tell me something”.

Also notice that phrases can refer to themselves, “would you ((please))” refers back to itself which
allows things like “would you pretty please”. This is called recursion. A phrase is only allowed to
refer back to itself once.

Internally, optional text is processed separately from optional phrases. Optional text is processed at
the beginning and split into different phrase variations, which means that “(?please) tell me” has
the same effect as “please tell me / tell me”. It also means that you can put phrases and wildcards
(see future example) within optional text, such as “(?would you ((please)))”. But you can not put
phrases and wildcards inside phrases, so “((?would you ((please))))” is NOT supported. To achieve
that, you would need a ((?would you)) phrase containing “would you ((please))”.

Important points:
* Make a phrase optional by putting a ? inside the parentheses, such as ((?please))
* Make text optional using single parentheses, such as (?thanks)
* phrases can refer back to themselves

20 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 2.8 — Unimportant Phrases

In the last example the ((?please)) is optional but it still affects the overall Accuracy. For example,
if you type “tell moi something”, it would match “tell me something” with 77%. But “please tell
moi something” matches “please tell me something” with 84%. And “pleeeease tell moi something”
matches 69%. You may want these all to have the same score, as if the “please” was never there at
all.

You can do this by adding an ! to the phrase label such as ((!?please)). It works for non-optional
phrases too such as ((!please)).

Type Label Desc | Text If |Learn |Goto |Accuracy

output start | welcome Hi there, I'm your eighth
phrases bot! I show
unimportant things.

input tell_ me (("please)) tell me something 60
((17please))

output tell me You are fantastic.

phrase please please
pretty please

In this example, the first ((!please)) is required but the second one is optional. And neither
contribute to the Accuracy. Both “please”s will be stripped off your input before the final Accuracy
is computed.

Unlike optional phrases using a ?, unimportant phrases with a ! can only occur within phrase labels.
They can not apply to normal text, so (!please) would not work.

This example requires a minimum Accuracy of 60%. That is 60% before and after the “please”s are
stripped off. So if you type “please tell moi sumthing”, it first compares it to “please tell me
something”. This matches about 62% so it passes. Then it strips off the “please”’s and compares “tell
moi sumthing” to “tell me something” which is only about 50%. This is the final score, and as it is
below 60%, this input doesn't match.

Important points:
* Make a phrase unimportant by putting a ! inside the parentheses, such as ((!please))
* Make a phrase optional and unimportant by putting ! and ?, such as ((!?please))
* The reverse ((?!please)) also works
* The Accuracy is checked before and after the unimportant phrases are removed

21 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 2.9 — Wildcards

The Accuracy column can be used to add fuzziness to your bot. If you try to match “hello” with a
low accuracy, it will probably match “heya” and “hellllo” as well.

Another way to add fuzziness is using wildcards. They are like the joker in poker, they can be
whatever you want. There are two types of wildcard in Cleverscript. An underscore _ matches any
single character. And a squiggly tilde ~ matches zero or more of anything.

For example, the user input “hello” will match “he 0 with nearly 100% accuracy, because the
wildcards are assumed to be letter Ls. Similarly it will match “h~" with nearly 100% as the ~ eats
up the “ello” part. The accuracy is less than 100% because wildcard matches are never considered
as good as true matches like “hello”="hello”.

Wildcards, combined with $variable other$ provide a powerful way to learn things about the user,
as you can see in this example:

Type Label Desc | Text If | Learn |Goto | Accuracy
output start | welcome Hi there, I'm your ninth phrases
bot! I'm wild. Guess my favourite
colour.
input right_colour ~ ((bot_colour)) 90
input anything_else Anything else 0
output right_colour Yes! Well done with accuracy
$accuracy$%!
output anything_else Sorry. Try again.
phrase bot colour green

This bot asks the user to guess it's favourite colour. Without wildcards, you would have had to
predict all possible ways of saying “I think that your favourite colour is...”. Now, as long as the
user's input end with the word “green”, it passes.

This is very useful if you are looking for a specific word, as in this example. However, in bots with
lots of phrases, it should be used with care, as it can often pick up unexpected inputs.

For example, if your prediction was “~ red”, this would match fairly well to anything containing the
letters “red” such as “altered”. Pretend you had another prediction containing the word “altered”
such as “my phone number is altered”. If the user typed “my num is altered”, this would match
better to “~ red” than “my phone number is altered”. This is a very contrived example, but becomes
more likely as a bot grows in size and complexity, especially if you have more than one ~ on a
single line.

Important points:
* Use ~ as a wildcard, it can match anything the user says
* Use as amini-wildcard, it can match any single character
* Use~and _sparingly as they can cause unexpected results
* Wildcard matches can never be 100%

22 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 3 — Learning

With just inputs, outputs and phrases, you can already create complex bots which respond to user
input and give useful information. However, Cleverscript can also learn data, and you can use that
data to streamline your script and find out things about the user.

Example 3.1 — Basic Learning

You may remember learning about variables in your first algebra class. Given an algebraic equation
like x+4=10, the variable called x has the value 6. Computer programming languages are also full
of variables, though the variables are often words rather than single letters, things like counter=1.

The Learn column of your spreadsheet supports a similar format. Any text for an output or phrase

can have an equation like friendly=yes. Here the variable is called friendly and the value is yes.
When that output or phrase is used, the variable is learned. Here's a simple example:

Type Label Description Text If |Learn Goto | Accuracy

output start| welcome | The first thing |Hi there, I'm
the bot will say. |your first
learning bot!

input hello User says hello | ((hello)) thanks |60
output thanks Bot's reply Hmm, thanks.
phrase hello Hello phrase hi friendly=yes

hello friendly=maybe

g0 away friendly=no

When you upload and run this example, the bot will deliver its opening line as usual. If you say
“hi”, the input labelled hello will match it via the phrase ((hello)). Notice that the Learn column
next to the word “hi” says friendly=yes. When you say “hi”, the variable friendly will be set to the
value yes. Likewise, if you say “go away”, friendly will learn the value no. For all these, the bot will
reply “Hmm, thanks”.

If you test this using the uploader, it will tell you the values of any variables learned, along with
their age, such as: friendly=yes, friendly age=0. This means that the variable friendly now has the
value yes, and this value is 0 interactions old (it was just learned). The next two examples extend
upon this, and then you'll find out how to actually use them.

If you say anything else, the bot will return to its output start as normal. This will clear all variables,
so friendly will go back to being blank.

Inputs can also learn things, but their Learns are associated with the Gofo column instead and are
discussed in a later section of this manual. Note that if you wanted to put the “hi / hello / go away”
on one line in the spreadsheet with / in between, you would have to do the same with the Learn:
“friendly=yes / friendly=maybe / friendly=no”.

Important points:
* outputs, output starts and phrases can learn variables in the Learn column
* use the format variable=value
* only letters, numbers and _ are allowed in variable names, no spaces
* when the bot returns to its output start, all variables are cleared

23 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 3.2 — Learning From Input
You don't have to specify a value when learning in phrases. This will cause your bot to learn
directly from the user's input.

Type Label Description Text If | Learn Goto | Accuracy

output start|welcome | The first thing | Hi there, I'm
the bot will say. |your first
learning bot!

input hello User says hello | ((hello)) thanks |60
output thanks Bot's reply Hmm, thanks.
phrase hello Hello phrase hi greeting

hello greeting

go away->bad greeting

Note that the variable greeting does not have an equals sign. Instead, it will learn whatever is in the
Text column. For the “hello”, it will learn the value “hello”, which is functinoally exactly the same

as putting greeting=hello, but is less data entry (especially when combined with a short-cut shown

later in this section).

It will also learn the actual user's input into greeting other. So if you make a typo and say “helllo”,
greeting will be set to “hello” (from the Text column) but greeting other will be “helllo” (the actual
input with the typo). Along with greeting age, you will see these values when you upload and test
your bot. This feature becomes very useful later in this section when wildcards are introduced.

The -> in the last row above overrides learning “go away” into the variable greeting. Instead it will
learn “bad”. However greeting other will still learn the actual user's input with misspellings and all
“go away” or “go awway’’.

This kind of learning can also be done within outputs and phrases during output.
Important points:
* phrases can learn parts of the matched input

* to do this, put a variable name by itself in the Learn column
* all variables are cleared when the bot returns to its output start

24 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 3.3 — Using What You've Learned

There are two main ways to use the variables the bot has learned. The first method is to put the
value directly into an output (the other method is discussed in Section 4). To output a variable you
need to surround it by $ signs. The example below learns a value for the variable greeting and then
outputs it with $greeting$ when the bot replies. It also outputs the internal Cleverscript called
accuracy. There are several internal variables listed after this example.

Type Label Description Text If | Learn Goto | Accuracy

output start| welcome | The first thing | Hi there, I'm your third
the bot will say. |learning bot! I output a
variable.

input friendly | User is friendly |((hello)) / ((hello)) thanks |30
there

output thanks | Bot's reply Thanks for saying
$greeting$ with
accuracy $accuracy$%.

phrase hello hi greeting

hello greeting

hiya greeting

If you say “hello” to this bot, it will reply “Thanks for saying hello with accuracy 100%.” It has
learned and output the value of the variable greeting along with the internal variable accuracy.

You can also output a variable's age and the actual user input which matched, using the format
Sgreeting age$ and Sgreeting other$. The age is the number of interactions since the variable was
last learned. Several other properties are also available. If you typed “helllo” above then
greeting=hello, greeting other=helllo, greeting age=0, greeting length=35 (the number of
characters in $greeting$), greeting other length==6 and greeting position=2 (as “hello” is the
second choice in the phrase labelled hello).

You can also use variables in inputs and phrases. This allows you to change your predictions
depending on what the user has said previously. This is useful for things like asking a user to repeat
something (like an email address or password).

Important points:
* output variables by putting them in $ signs, like this $variable$
* output a variable's age with $variable age$
* output the actual matched user input with $variable other$
* output a variable's length $variable length$ and $variable other length$
* output the variable's position within the phrase with $variable position$
» capitalise variables just like phrases with $Variable$
* you can also use variables in inputs and phrases

25 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Internal Variables
Every bot manages several internal variables. You can output their values whenever you would like:

interaction_count: how many pairs of bot/user interactions have occurred so far
input: the entire user input, with any spaces trimmed off both ends

input label: the label for the input which matched the user's input

input_id: the internal id number corresponding to the input label
filtered_input: user input after input filtering

predicted_input: the scripted text which the user input matches

accuracy: the percentage match between the user's input and the input row
output label: the label for the output which the bot is saying right now
output_id: the internal id number corresponding the output label

output: the actual thing the bot is saying right now

conversation_id: identifier for this conversation between user and bot
errorline: any error information

database version: version of the database

software_version: version of the software

time_taken: the number of milliseconds the bot took to respond
random_number: random number from 1 to 1000 reset every interaction
time_second: number of seconds on the system clock (0-59)

time_minute: number of minutes on the system clock (0-59)

time_hour: number of hours on the system clock (0-23)

time_day of week: current day of the week (0-6 for Sunday to Saturday)
time_month: current month number (1-12 for January to December)
time_year: current four digit year (2013)

time_started: number of seconds from 1 Jan 1970 to when conversation started
time_elapsed: approximate number of seconds since conversation started
interaction_1 to interaction_20: record of the previous twenty interactions
callback: used by some versions of the software to store a callback function

For instance, in the example above, if you say “hello”, then input=hello, predictedinput=hello,
input_label=friendly, accuracy=100 and output label=thanks. The random number and time
variables are set when the bot starts processing the user's input.

It can be very useful to set up a phrase labelled ((debug)) in your bot, which outputs user and
internal variables along with every output. This will be demonstrated in a later example.

In addition to the above, the following variables relate to the Clever Data feature, which allows your
bot to do some general small talk. See section 6 for more information on how this works.

reaction: reaction returned by Clever Data

reaction_tone: tone of the reaction from very negative (-2) to very positive (2)
reaction_degree: percentage estimate of how much this reaction is felt
reaction_values: 7 comma-separated percentage values, see below

emotion: emotion returned by Clever Data

emotion_tone: tone of the emotion from very negative (-2) to very positive (2)
emotion_degree: percentage estimate of how much this emotion is felt
emotion_values: 7 comma-separated percentage values, referring to 7 basic emotions (anger,
fear, disgust, contempt, joy, sadness, surprise)

clever_match: used to influence Clever Data match

clever _accuracy: accuracy of match made by Clever Data

clever output: reply returned by Clever Data

26 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.4 — Learning Multiply and Mathematically

It is very easy to learn more than one variable, and to perform basic mathematical operations on
variables. And from November 2013 Cleverscript also includes a more advanced mathematical
expression parser, demonstrated and described below.

Type Label Desc. | Text If| Learn Goto |Acc
output start | welcome Hi there, I'm your fourth | | mood=okay and count=1

learning bot!
input greeting ((hello)) thanks |60
output thanks You've greeted me count=+1 and

$count$ times. I'm in a test=(3.14+S$count$/2)
$mood$ mood.

phrase hello hello greeting and mood=good

g0 away greeting and mood=bad

When a bot first starts chatting, all its variables are blank. The example above uses the output start
to assign default (aka starting or initial) values to the mood and count variables. After this bot says
“Hi there!”, it learns the variable mood as okay and count as 1. The word “and” tells it to do a
multiple learn.

If you say “hello” or “go away” you will trigger the Learn in the phrase labelled hello. This will
also learn two variables. The variable greeting does not have an = sign, so it will learn from the 7ext
column and the user's input. The variable mood will learn either good or bad depending on what
you said.

Finally, after the bot delivers the output labelled thanks it will increment the variable count, adding
1 to its value each time. You can use this syntax to add, subtract, multiply, divide or modulus any
whole number. It ignores and truncates everything after the decimal point. Unless you specify a
default value in the output start all numerical variables start at 0.

Mathematical expressions:
You can also use mathematical expressions when learning (and in If conditions — see next section).
Math expressions give you the ability to manipulate decimal numbers in much more complex ways.
The expressions:

* should be enclosed by parentheses

¢ can include whole numbers, decimals, +, -, *, / and %

* asis standard, + and — have lower precedence than other operators

* can have more parentheses inside them to determine precedence

* spacing within the expressions is ignored

The following functions are also available:
* the round function rounds a decimal to the nearest whole number, eg test=(round($test$))
* the floor function always rounds down, so 9.99 becomes 9
* the ceil function always rounds up, so 9.01 becomes 10

27 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Please note the following restrictions and warnings:

* don't put spaces around a division sign, or else it will be interpreted as a line separator, so
put e.g. $test$/2 (without spaces) instead of $test$ / 2 (with spaces).

» if you use the operators above (+=, *=, etc) values are converted back to whole numbers, so
put the + within the expression such as: test=($test$+1.5)

» all variables used in math expressions should be numbers, expect blanks which become 0

* if they are not numbers, then the expression will abort and the value will be 0

* division and modulus by 0 will not give an error, but will be evaluated as 0

* it will try to detect problems when uploading and display an error

An example expression is included in the example above but they can be used simply to perform
operations on numbers with decimals (as += only works on whole numbers), or can be much longer
and more complicated:

* test=(Stest$ + 3.1428)

o test=($count$ * ($test$ + 7) — (floor ($othervariable$) + 3) / 6.2)

» test=(round ($test$ + 17 — 3.18 / $count$))

Importing points:
* you can also Learn in outputs and output starts
* Learns in output starts essentially set default values for your variables
* separate Learns can be associated with each line of 7ext, unlike inputs and phrases
* you can do multiple Learns in outputs, phrases and inputs using the word “and” or the
symbol &
* you can use =+ and =- to increment or decrement a numerical variable
* you can use =*, =/ and =% to multiply, divide and take the modulus of whole numbers only
* numerical variables start at 0
* mathematical expressions deal with decimals and must be enclosed in parentheses

28 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.5 — Learning Shortcut in Phrases

Phrases and outputs support an additional shortcut for learning. If only the first Learn in a phrase is
filled in with a single variable, it is assumed to apply to every line of Text in the phrase. This
example is very similar to the second one above:

Type Label Description Text If |Learn Goto | Accuracy

output start| welcome | The first thing |Hi there, I'm
the bot will say. |your fifth
learning bot!

input hello User says hello | ((hello)) thanks |60
output thanks Bot's reply Hmm, thanks.
phrase hello Hello phrase hi / hiya greeting

hello / hey

go away->bad

The main difference is that all 5 of the 7ext options for the phrase labelled hello will automatically
learn into the variable greeting, including those separated by the /. This can reduce the amount of
data entered into a spreadsheet.

You can also provide a value such as friendly=yes. It will still be applied to all the lines of 7ext as
long as it appears first and is the only Learn. As soon as you add a Learn next to any of the other
lines of 7ext, or try to put a multiple Learn into the first line, then this short-cut will no longer work
and each 7ext will learn separately.

This can cause ambiguity. If you only wanted to learn greeting for the first word “hi” above and not
for any of the others, then you might be surprised that greeting was also learned for “hiya”, “hello”
and all the others. To get around this, you can change it into a multiple Learn such as “greeting and
test=yes” or swap them around so that “hi”” does not appear first.

Importing points:

* asingle Learn next to the first line of 7ext in an output or phrase will be applied to all Text
* this provides a data entry short-cut but there is a chance for ambiguity

29 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.6 — Calculating and Overloading

This example shows how to deal with numbers, and an advanced technique for using the same

phrase with two different variables.

Type Label D/ Text If Learn Acc
output start | welcome Hi there, I'm your sixth
learning bot! Let me
calculate.
input calculation what is ((num1)) ((operator)) |operator="+"|numl+=num 50
((num))
operator="-" | num1-=num
operator=“*" num1*=num
output calculation | |The answer is $num18§.
phrase digit 0/1/2/3/4/5/6/7/8/9
phrase num ((digit)) / ((digit))((digit)) / num
((digit))((digit))((digit)) /
one->1/two->2
phrase numl ((num)) num1=num
phrase operator +/-/*/plus->+ operator

The ((num)) phrase can match to any three digit number. It does this using the ((digit)) phrase.

When you give this bot an input such as “what is 23+12”, the “23” matches the phrase ((numl)),
which contains ((num)). ((num)) learns the variable num as “23” and then num learns the value of
num, “23”. The second number “12” matches the phrase ((num)) and is learned as num.

Depending on the operator variable, the variable num (23) then adds, subtracts or multiplies the
variable num (12) leaving the result in num i, which is displayed as the answer.

With a bit of extra scripting, this bot also recognises text inputs like “what is two plus one?”. Also
note that the spaces between ((num1)) and ((operator)) and ((num)) are optional. In fact, all single
spaces in Cleverscript are optional. This allows it to match more fuzzily.

Importing points:

* to match numbers, implement a ((digit)) phrase with0/1/2/3/4/5/6/7/8/9

* overload a phrase by wrapping it in another phrase, allowing the same phrase to learn to
more than one variable
» all single spaces between phrases are considered optional

30 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.7 — Learning with Wildcards
Wildcards, combined with $variable other$ provide a powerful way to learn things about the user,
as you can see in this example:

Type Label Desc | Text If Learn |Goto | Accuracy

output start | welcome Hi there, I'm your seventh
learning bot! What's your name?

input users_name ((my_name)) 80

((!my name is)) ((my_name))

output users_name Thank you $name_other$.

phrase my name is Iam/I'm/Im

my name is / my name's

phrase my_name ~ name

Up till now, the only way to find out the user's name would be to list every possible name in the
phrase labelled my _name, which would be a bit impractical. But now, if you type “My name is
Julie”, the wildcard ~ will match the word “Julie” and $name_other$ will contain the actual
matched text: “Julie”. So the bot will reply “Thank you Julie.”

Alternatively, you can just type “Julie” and the bot will learn $name_other$ as “Julie”. However if
you type “I refuse to tell you”, then the bot will learn that as $name_other$ and will reply “Thank
you I refuse to tell you.” This shows the power and danger of wildcards. They are powerful as they
can match anything, and dangerous as they may match too much. Well — they're not that dangerous.
You're not going to lose a limb or anything, but your bot may give some odd replies.

You can use more than one ~ in a single line, but the more _and ~ you use, the more likely the bot
is to misinterpret the input.

Notice the ! in the the phrase ((!my name is)). This makes it unimportant and excluded from the
overall result. This means that if you type “my namme is Julie”, the typo in “namme” won't effect
the overall result and the variable name_other will be extracted correctly as “Julie”. If you leave out
the ! then the whole sentence would match the ~ with a higher accuracy and name_other would be
learned as “my namme is Julie”.

Important points:

* Use ~ as a wildcard, it can match anything the user says
* Store the values in variables and access them with $variable other$

31 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.8 — Dynamic Variables, Arrays and Temporary Variables
Cleverscript also allows for dynamic variables. These are essentially variables within variables. You
can use them to create arrays. For example:

Type Label D| Text If | Learn Goto | Acc
output start | welcome Hi there, I'm your eighth
learning bot! I do arrays.
input users_name| |my name is ((my_name)) count+=1 and 70
facts {count}=name
input users_city I live in ((my_city)) / my city is count+=1 and 70
((my_city)) facts {count}=city
input what is What is my ((attribute))? 70
output users name | |You are $user name_other$.
output users_city You live in $user city other$. where@=yes
output what _is Your S$attribute$ is
$user_{attribute} other$.
phrase my name ~ user name
phrase my_city ~ user_city
phrase attribute city / name attribute

The first two inputs learn the user's name and city into the variables $user name$ and Suser age$.
These are normal everyday variables. However, the output labelled what is references them using a
dynamic variable Suser {attribute}$. This embeds the variable Sattribute$ at the end. So if you say
“What is my city?”, your bot will replace the {attribute} inside Suser {attribute}$ with “city” and
output the variable $user city$.

Meanwhile the variable $count$ is incremented each time you tell it something, and a facts pseudo-
array is created. If you tell it your city then your name, then it will learn $facti$ as “city” and
Sfact2$ as “name”.

Dynamic variables add a powerful new feature to Cleverscript. They are however less efficient to
process than normal static variables, so should only be used if needed.

From October 2013, Cleverscript also supports temporary learning, where a variable is learned for
the current interaction only and then reset to its previous value. This is accomplished by putting an
@ symbol before the = in a learn. In the above example, the variable $where§ is set to “yes” when
the bot says “You live in”. By the start of the next interaction $where$ will have been reset to its
previous value (blank). Note that $where_age$ is not reverted. The age always reflects when the
variable was last set, whether temporary or permanent. The @ can be used with =+ or by itself
when learning in phrases (eg by just putting attribute(@ in the last line above).

Important points:
* Use the syntax Suser{attribute}$ to create dynamic variables (variables within variables)
* These can be used to create and reference arrays
* You can use more than one such as Suser{counter}{attribute}$
* Dynamic variables are not as efficient as normal variables
* Put an @ symbol before the = in a learn to make it temporary, lasting one interaction only

32 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.9 — Parameters
From November 2013, a new feature allows you to pass parameters into phrases. If you are a
programmer, then they will remind you of arguments to functions. They are used like this:

Type Label D | Text If |Learn |Goto | Acc
output start | welcome Hi there, I'm your ninth learning bot. I do
parameters.

input what place ((what *noun* do you *verb*, place, like)) 70
input what_food ((what *noun* do you *verb*, food, hate)) 70
output what place I like Antarctica.
output what_food I don't like fennel.
phrase what *noun* do ((what)) *noun* do you ((*verb*)) /

you *verb* tell me the *noun* you ((*verb*))
phrase what what / which
phrase like like / love / prefer
phrase hate hate / dislike / detest

The phrase labelled what *noun* do you *verb* takes two parameters: noun and verb. These
parameters are declared by putting them in *asterisks*. When this phrase is used in the input
labelled what_place, the parameter noun is set to the word “place” and verb is set to the word
“like”.

Within the phrase itself, *noun™* and *verb* behave just like variables, with the values “place” and
“like”. So the phrase will actually try to match “((what)) place do you ((like)) / tell me the place
you ((like))”. After this bot says “hi there...” you can say things like “what place to you prefer?” or
“tell me the food you detest”.

Note that your bot can still have separate variables called $noun$ and $verb$. The parameters
noun and *verb* are only active within the phrase.

Internally, the parameters feature relies on variables and learning, and dynamically referenced
phrases such as (($topic$)) or ((*verb*)) are not as efficient as static phrases like ((food)) or
((like)). Other restrictions are that they can not be used recursively (a parameterised phrase can not
refer to itself) and can not be dynamic, such as ((var *parameter®, value)).

Important points:
* Use *asterisks™® in the phrase label to create a phrase which has parameters
* Pass the parameters to the phrase by adding a comma and then the value such as
((phrase with *parameter1* and *parameter2*, valuel, value2))
* Within the phrase the parameters are replaced by their values
* Phrases with parameters are not as efficient as phrases without them
* Phrases with parameters can not refer to themselves and can not be dynamic

33 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 3.A — Learning From Phrases
From October 2014, this feature allows you to learn a variable from a phrase. This is an exciting
addition, allowing you much more flexibility with learns.

By the way, I have called it example 3.A because if | number it 3.10 then the examples list on the
chatting page of the Cleverscript website will go out of order (3.1, 3.10, 3.2, 3.3, etc). So these
examples are numbered hexidecimally because A=10 in hex.

Type | Label D| Text If | Learn Goto | Acc | Mode
output |welcome Hi there, I'm your tenth mood="‘((somewhat))
start learning bot. I learn from ((mood))”
phrases.
input | hello hello 70
output |hello I am in a $mood$ mood. 70
phrase |somewhat sort of / somewhat random
phrase |mood good / great / tolerable / bad random

The $mood$ variable in the output start is learned when the bot gives its welcoming statement. The
phrases ((somewhat)) and ((mood)) are expanded and the variable is assigned the result. So it could
be something like “sort of good”. After you say “hello” the bot will reply with its mood. It will

relearn a new random mood every time you go back to the output start.

The phrases must be in quotes, otherwise they are mistaken for a mathematical expression. Note
that the full functionality of phrases is not available here. For example, the phrases are not
correlated against the input, so the Mode “most like input” has no effect. And the phrases used can
have Ifs but any Learns are not executed.

Important points:

Phrases can now be used in the values for Learns
The phrases must be in double quotes
The phrases are treated as output phrases, and so can have modes
You can use any mode except “most like input”
Within the phrases, Ifs are checked but no Learns are executed

34 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 4 — If Conditions

The learning section of this manual showed how variables like $accuracy$ can be included directly
in an output. The other main way to use variables is in /f conditions. This section will show how the
If column is used.

Example 4.1 — Conditional Outputs

In outputs, you can use the value of a variable to choose a specific output variation. In the example
below, the entries in the /f column relate to individual rows of output. If you say either “hey” or
“hey there”, then the variable greeting will learn the value /ey, and this will cause the bot to choose
the output “What's up?”’

In this example, shading is used to indicate that the /f'column is tied to the 7ext column for outputs.
It is also tied to the Learn column. Learning in outputs was introduced in the previous section and
will be revisited in the summary at the end of the manual.

Type Label Desc | Text If Learn | Goto |Accuracy
output start | welcome Hi there, I'm your first
conditional bot!
input friendly ((hello)) greet |30
((hello)) there
output greet Hi! greeting=hello
Hello there. greeting=hi
What's up? greeting=hey
phrase hello hi / hello / hey greeting

The If condition greeting=hi tells the bot to only respond with the corresponding output text “hello
there”, if the variable greeting has the value Ai. This could have also been done with multiple input
and output lines, but you would have needed up to six input lines and three output lines.

The If condition can be much more sophisticated than this, checking for multiple variables and
allowing for >, < and other types of check as well. That will be covered in the next example.

Note that the / format is still supported as a separator for both the 7ext and If columns. In this
example, you could have put “Hi! / Hello there. / What's up?” as the 7ext, and “greeting=hello /
greeting=hi / greeting=hey” as the If. The bot will correctly associate the first condition with the
first text and so on.

These If conditions also work in phrases and output phrases, but not in inputs as they use their Ifs
for choosing a Goto instead.

Important points:
* outputs and can have conditions in the /f column
» there can be one if for each separate bit of text
* conditions usually have the format variable=value
* the corresponding text will only be output if the condition is met
* you can still use / to separate the 7ext and If
* Ifconditions also work this way in phrases and output phrases

35 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 4.2 — Debugging and Blanks

You can use conditional outputs to show the values of variables while you are chatting, which is
very useful for tracing issues and errors. The bot in this example is very similar to one of the
previous ones, but with debugging built in.

Type Label D. | Text If Learn Goto Acc
output start | welcome Hi there, I'm your second
conditional bot, with
debugging.
input friendly ((hello)) friendly=yes |thanks |30
((hello)) there
input debug on turn debug on debug=on |thanks 100
input debug off turn debug off debug=off |thanks 100
output thanks Thanks. ((debug))
phrase hello hi / hello / hey greeting
phrase debug Friendly: $friendly$ debug=on
($friendly age$). Greeting:
$greeting$. Accuracy:
$accuracy$. Input:
$input_label$.
[BLANK]

You can say “hello” and “hey there” to this bot, and it will learn the greeting variable as before and
say “Thanks”. Immediately after the word “Thanks” it will also output the ((debug)) phrase. It will
look at both the output options for debug. The first one can only be output when the variable
debug=on. Since all variables start out blank, this is false, so the bot will instead output the second
option, which is a blank.

The special word [BLANK] was created for just this situation. It allows you to output nothing.
Empty cells would otherwise be ignored, and sometimes spreadsheet software automatically clears
cells which contain only spaces.

You can then say “turn debug on” which sets the variable debug to the value on. The next time you
say “hello” and the bot says “Thanks”, it will again include the ((debug)) phrase. But this time the
If condition debug=on will be true, and so it will output the long sentence containing all the
variables. You can say “turn debug oft” to turn off debugging.

Note that the debugging inputs have an Accuracy of 100%, so you have to type them exactly. If you
type anything else like “boo”, the bot will return to the output start and reset all variables, including
clearing debug. This type of debugging is very useful when testing your bot using an API or some
other interface which doesn't show variable values.

Important points:

* Use learning and an /f'to implement some basic debugging, showing variable values
* Use [BLANK] to output nothing

36 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 4.3 — Complex Conditions
Conditional outputs can be much more complex than the examples given above. They can also
appear in phrases. Like this:

Type Label D. |Text If Learn Goto |Acc
output start | welcome Hi there! I'm your third
conditional bot.
input friendly ((hello)) friendly=yes |mood |60
((hello)) there
input unfriendly ((go away)) friendly=no |mood |60
output mood You are ((user_mood)).
phrase hello hello->3 formality
hi->2
hey->1
phrase g0 away be gone->3 formality
go away->2
scram->1
phrase user_mood very nice formality<=2
and friendly=yes
nice formality>=2
and friendly=yes
a bit mean formality=3 and
friendly=no
nasty formality<=2
and friendly~n

99 C¢

This bot accepts six types of greeting: “hello”, “hi”, “hey”, “be gone”, “go away” and “scram” and
uses them to set two variables: friendly and formality. It then replies with something like “You are
very nice.” depending on those variables. The very last condition checks if friendly contains an “n”.

This introduces a few new features:

* Phrases can have If as well, but they are only used within outputs when the bot says
something. They are ignored for inputs.

* Numerical conditions: if you use <, >, <= or >= then your variables will be treated as
numbers and compared numerically

* You can use # for not equals: friendly#yes. Imagine the # symbol is like = crossed out.

* The ~ symbol means “contains”. It is case-insensitive. Use !~ for “not contains”.

* Multiple conditions: use the words and and or to specify multiple conditions (alternatively
& and |). If you mix ands with ors, then the leftmost one takes precedence. In other words,
the condition friendly=yes and formality=1 or formality=2 is actually treated like
(friendly=yes and formality=1) or formality=2 which is probably not the intention. But you
can rearrange it to make it work: formality=1 or formality=2 and friendly=yes.

* Put the value in quote marks if it contains spaces, such as: friendly="“very nice”

* Ifmore than one /f condition is met, then the bot chooses between them

* If none of the conditions are met, it outputs nothing or the phrase unhandled _ifs

37 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 4.4 — Variables within Ifs and Learns

So far, we've used variables in the left hand side of /fs and Learns, before the = sign, such as
friendly=yes and formality<=2. You can also use variables on the right side of the =, <, >, etc signs,
but you have to surround them with $ signs, as you did for outputs. If not, the bot will not know it's
a variable. Here is a simple example:

Type Label D. | Text If Learn Goto |Acc
output start | welcome Hi there, I'm
your fourth
conditional bot!
input friendly ((hello)) history="$history$ nice" |reply |60
((hello)) there
input unfriendly ((go away)) history="$history$ mean" | reply | 60
output reply You have been
$history$. Yay!
You've been mean_age <
$history$. Boo! |$nice age$
phrase hello hello / hi / hey nice=yes
phrase go away scram / go away mean=yes

In this example the history variable keeps a running list of whether you have said something nice
(“hello”, “hi” or “hey”) or something mean (“scram” or “go away”). Each time you say one of
these, the history variable learns itself with the word “nice” or “mean” tagged on the end.

There's also an example using variable ages in the If. The comparison mean _age<S$nice age$ will
be true if you were mean more recently than you were nice, and the output will have “Boo!” at the
end, otherwise “Yay!” There are better ways of doing this, but it's just for an example.

It may seem confusing that the variables on the left side of the equation do not have $, but the
variables on the right side do. In fact, you could put them on the left side as well, such as
Snice$=yes or $mean_age$<$nice_age$. We avoided this syntax up till now in order to keep things
as simple as possible.

The If and Learn column may look a bit like a programming language, and they are in a basic way.
They support = and comparisons and and and or. They are more flexible than normal programming
as they don't always require quote marks or variable signifiers like $ signs. But they are also much
more limited, as they don't support mathematical operations like $nice _age$+2.

Important points:
* the If'and Learn columns can variables on the right side of the =, <, > etc sign as well
* the $ signs are optional on the left side of the =, <, > etc
* the $ signs are required on the right side of the =, <, >, etc
* comparisons like mean age<S$nice age$ are supported
* variables within strings like “$history$ nice” are supported
* no other operations are allowed

38 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 5 — Structure

All of the bots in this manual are very simple in their structure. All but one have all their inputs
under the output start. The only exception was the bot who asked about peas. That bot showed how
a more complex branching structure could be developed.

That branching structure is fairly easy to implement and understand for simple bots, but can get
unwieldy when there are dozens or hundreds of inputs and outputs. This section shows alternative
ways to structure bots using Ifs and variables.

At the end of the section is a summary of how all the different columns fit together, and a discussion
of when different approaches are appropriate.

Example 5.1 — Multiple Gotos

So far, all our input lines have no Learn and just a single entry in Goto columns, or no Goto at all
(then the bot goes to the output with the same label). But an input can have more than one Goto,
each with an /f'and a multiple Learn. The shading shows how the If column is tied to the Learn and
Goto for inputs. Like this:

Type Label Desc | Text If Learn Goto Acc

output start | welcome Hi there, I'm your
first structural bot!

input greeting ((hello)) friendly=yes \ mood=good |reply good |60
((hello)) there friendly=no |mood=bad |reply bad
((hello)) to you
((go away))

phrase hello hi / hello / hey friendly=yes

phrase g0 away go / go away friendly=no

output reply good That's $moodsS.

output reply bad I feel $moods$.

For inputs, both the If and Learn relate to the Goto. In the examples so far, we have had just one
Learn and one Goto. This is just an extension of that, with added /f conditions.

If you say “hello” or “hey there” or “hi to you™ then the variable friendly will learn the value yes.
Then the bot will look at all the Gotos for the input labelled greeting and process them in order. The
first Goto has the If condition friendly=yes. In this case, it is true, friendly does equal yes, so the
variable mood will learn the value good and the bot will go to the output labelled reply good.

Important points:
* inputs can have more than one Goto
* cach Goto can have an Ifand a Learn
» the Gotos are processed in order, the first matching one is used
» for inputs, the If and Learn columns relate to the Goto, this is different from phrases and
outputs where the If relates to the 7ext and there can only be one entry in the Learn column
* an input can have more lines with Gotos than Text
* the separator / is also supported for all three columns If, Learn and Goto

39 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.2 — Dynamic and Unhandled Gotos — Informational Bot

You can also use variables within Gotos. We call these dynamic Gotos. They are a powerful
technique enabling you to do a lot of the recognition in phrases rather than inputs. This example is
the basis of an informational bot, one that can answer questions on a website or in a game.

Rather than having lots of different inputs for each question (“what is a computer?”, “tell me about
Cleverscript”, etc), it has one different input for each query type (in this case, “what is...” type
enquiries). The ((topic_list)) phrase recognises allowed topics and sets the $topic$ variable, which
then tells the bot to go to the appropriate output, formed by they dynamic Goto topic_$topic$.

Type Label D| Text If|Learn | Goto Acc
output start | welcome Hi, I'm your second structural
bot! Ask me a question.
input what is something | |((what is)) ((topic_list)) topic_S$topic$ |40
output topic_computer A computing device.
output topic_cleverscript Cleverscript made me!
output topic_name My name is ((bot_name)).
output unhandled goto Something went wrong.
phrase what is what is / what's / whats

tell me about / tell me

phrase topic_list ((computer))->computer topic

cleverscrupt

your name->name

phrase computer computer / laptop / machine

phrase bot name Evie

This bot can only answer a limited set of questions such as “what is your name?”” But it can be
easily extended. For every new query topic, you just need to add one line to the phrase labelled
topic_list, and one output to give the answer. And to get your bot to answer a whole new type of
question such as “what is your favourite ...”, you need to add a new input.

The danger with this approach is that you may mistype a topic, and the bot will end up trying to go
to a Goto which doesn't exist. This sort of error would not be flagged up when importing. Normally,
if this happened, it would show the user an error message like “Error: Could not find the goto
'topic_comppuuter”’. But you can hide the error message by providing an output labelled
unhandled goto as above. The actual error is still available in the $errorline$ variable. (The
unhandled goto output will also handle blank inputs if blank input output is not provided.)

To see this in action, ask “what is cleverscript?”. It will match the mistyped word “cleverscrupt”,
learn “cleverscrupt” as fopic and try to go to an output labelled topic_cleverscrupt. This doesn't
exist so instead you'll see the unhandled goto.

Important points:
* dynamic Gotos containing variables are a powerful way to set up informational bots
* if there are no Gotos, or if none of the Goto If conditions are met, then the bot goes to the
output with the same label, or else goes to the output unhandled goto or else gives an error

40 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.3 — Dynamic Phrase Labels

From March 2013 you can also use variables within phrase labels. These are known as dynamic
phrase labels. It allows for the bot above to be more streamlined. In the bot above, for every new
question, you have to add a choice to fopic_list and a new output. This works well, until you want to
modify all the outputs, to add a debugging message for example. Dynamic phrase labels gets
around this by having just one output which picks a phrase based on a variable. Like this:

Type Label D| Text If Learn |Goto |Acc
output start| welcome Hi, I'm your third structural bot!
Ask me a question.
input what i1s_something | |((what is)) ((topic_list)) 40
output what is something | |((topic_S$topic$)) ((debug))
phrase topic_computer A computing device.
phrase topic_cleverscript Cleverscript made me!
phrase topic_name My name is ((bot_name)).
phrase what is what is / what's / whats

tell me about / tell me

phrase topic_list ((computer))->computer topic

cleverscrupt

your name->name

phrase computer computer / laptop / machine
phrase bot_name Evie
phrase debug Topic=$topic$.

phrase unhandled phrase I don't know.

This bot is very similar to the one above except the answer comes from a dynamically referenced
phrase instead of a dynamic Goto. And as above, if you ask “what is cleverscript?” it will try to
output a non-existent phrase labelled fopic_cleverscrupt. So as with the unhandled goto above, you
can also define a phrase labelled unhandled phrase. This will be delivered instead. Otherwise your
bot will deliver the missing phrase label directly in its reply.

Another way to handle this is by adding an If condition to your output, which says PhraseExists:
Stopic$ or PhraseMissing:$topic$. These evaluate to true or false.

Dynamic phrase labels can also be used for matching the user input. However they are inefficient
compared to normal phrases as they involve a database lookup. This is okay if it happens a few
times for an output, but could slow things down if had hundreds of different dynamic phrase labels
being checked for every user input.

Important points:
* dynamic phrase labels containing variables provide another powerful technique
* dynamic phrase labels allow you to have a single output
» if a phrase label does not exist, the phrase labelled unhandled phrase is delivered instead
* or else the bot will output the missing phrase label directly in its reply
* dynamic phrase labels can also be used for input but are not as efficient as normal phrases

41 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.4 — Conditional Inputs — Game Bot

This example shows another way to implement a branching structure. This puts all the inputs under
a single output start, but has a special */f condition attached to the inputs. This special *If
determines if the bot should even consider that input at all.

The following example demonstrates the special *If, along with multiple Goftos, optional and
unimportant phrases, and wildcards.

Type Label D. |Text If Learn | Goto Acc

output start | welcome Hi there, I'm your third room=1
structural bot! You are in a
maze. Go to the correct
room and shout.

input go_straight ((1?7g0)) ((straight)) room=1 |room=2 |good way |60
room=3 | room=4|good way

bad way

input go_left ((17g0)) left room=2 |room=3 |good way |60
bad way

input go_other ((go)) ~ bad way 40

input shout ((shout)) *room=4 40
done maze

output good way Good choice. You're now in

room $room$, keep going!

output bad way Ooops. Not quite.

output done maze Well done! You won!

phrase straight straight / up / forward

phrase go go / turn / move / head

phrase shout shout / yell / scream

This bot implements a very simple game. There are three rooms, and you start in room 1, with the
variable room=1. There are four inputs. The inputs starting with go are always active. The first
two, go_straight and go_left have multiple Gotos. They only allow you to progress if you say the
correct direction for the room you are in.

The input labelled shout is only active when you are in the fourth and final room. Otherwise, the bot
completely ignores it. If you say “shout” in rooms 1, 2 or 3, it will be considered an invalid input,
and you'll go back to the beginning of the game. This is achieved with a special /f. The * in front of
the Iftells the bot to only even consider the input if the If'is true.

To win the game, say “go straight” (room=2), then “go left” (room=3) , “go straight” again
(room=4) and then “shout”. Any wrong direction at any stage will give you the output labelled
bad way. Anything completely unexpected, like “hello”, or “shout” in the wrong room will send
you back to the output start and restart the game.

Note that there is no Learn or Goto tied with this special */f. It stands alone. The shading shows
visually how the special */fis tied to the input and not the Goto.

42 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

This game without variables

This game could have been programmed quite easily without variables, by using the branching
structure as in the pea-obsessed bot, having a different output for each room. However, you would
have had to duplicate the input labelled go _straight under both the room1 and room3 outputs, which
1s okay for this game, but less practical if you have 100 rooms or game states.

Without variables, an input has to be always active (under the output start) or else only active under
one specific output. It's not possible to have an input active for only some of the outputs.

What multiple Gotos give you
Multiple Gotos essentially allow you to do this, once you've introduced some variables. With
mutiple Gotos, an input can be active in two or more, but not all outputs.

What special *Ifs give you

The special *Ifs take this even further. The input labelled shout above does not even need multiple
Gotos. It is simply turned off when you are not in room 4. This means that you don't have to
consider how this particular input should behave when the game player is in one of the other rooms.

This is mildly useful in this example, but very useful if you have 100 rooms or game states. It
means you can add new inputs specific to a handful of game states, and ignored for the rest. You
don't have to consider the implications of overriding some other input. Not having to add lots of Ifs
for multiple Gotos also reduces the risk of a dynamic Goto error.

Important points:
* inputs can have a special *If preceded by a * which determines if they are considered at all
» the special */f'has no Learn or Goto
* normal /f{/Learn/Gotos must be placed on subsequent lines of the spreadsheet

43 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.5 — Output Borrowing
The Goto column is also be used with outputs. It allows one output to borrow the inputs of another
output. It essentially allows an output to Goto another output to get more inputs. Feel free to take a
couple minutes to digest that one.

Output borrowing is a more direct way for an input to be active in two but not all outputs. This

example shows another version of the game above, without any varibles and with only one If.

Type Label D.| Text If L. |Goto Acc
output start | welcome Hi there, I'm your fourth

structural maze bot! Type

'start’ and find your way.
input go_other ((go)) ~ bad way |40
input start start room1 40
output rooml Welcome to room 1.
input go_straight (('?go)) ((straight)) output_label=room3 room4 60

room?2

output room?2 Welcome to room 2.
input go_left ((1?go)) left room3 60
output room3 Welcome to room 3. room1
output room4 Welcome to room 4.
input shout ((shout)) done _maze |40
output bad way Ooops. Back to room 1. room]l
output done maze Well done! You won!
phrase straight straight / up / forward
phrase g0 go / turn / move / head
phrase shout shout / yell / scream

This version has a separate outout for each room. Notice that the output labelled room3 borrows
from room1 in the shaded Goto column. This means that the input labelled go_straight is active in
rooml and room3. Consequently it needs an /f to know whether it should go to room2 or room4.
The output labelled bad way also borrows from room . Whenver you give a bad direction, you'll
return to room 1. Otherwise bad way would have need lots of Ifs as well.

In this verison, you have to type “start” to get into room! in the first place. This is because if
go_straight was under the output start it would be active in all rooms. The outputs bad _way and
room3 could have also directly borrowed the input labelled go_straight. In this example game, it
would have had the same effect.

Important points:
* outputs can borrow inputs from other outputs
* to do this, put the output labels in the Gofo column
* an output can borrow as much as it would like, put each on a separate line or separated by /
* you can also borrow directly from other inputs
* borrowings are not related to the /f and Learn

44 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.6 — Conditional Qutputs

In a similar way to conditional inputs, you can also put a special *If'in an output. The output's
special *Ifis checked just after the input's If/Learn/Goto. 1f the special *If is false, then that Goto is
skipped.

Type Label D. | Text If L |Goto Acc
output start | welcome Hi there, I'm your fifth

structural maze bot! Type

'start' and find your way.
input go other ((go)) ~ bad way |40
input start start room1 40
output rooml Welcome to room 1.
input go_straight ((1?7g0)) ((straight)) room4 60

room?2

output room?2 Welcome to room 2.
input go left ((1?7go)) left room3 60
output room3 Welcome to room 3. room1
output room4 Welcome to room 4. *output_label=room3
input shout ((shout)) done maze |40
output bad way Ooops. Back to room 1. rooml
output done maze Well done! You won!
phrase straight straight / up / forward
phrase g0 go / turn / move / head
phrase shout shout / yell / scream

This bot is exactly the same as the one before. You would use this method when you have lots of
inputs going to the same output only if some /f condition is met. With this method, you can avoid
copying and pasting the /f condition next to the inputs. Instead you can have it just once as a special
*If associated with the output.

Note that each variation in an oufput can also have its own If and Learn. So you have to put the
special *If at the end of all the other Ifs, or next to any variation which doesn't already have an /f.

Using this feature makes it more likely to cause an error where none of an input's Gotos will be
viable. If this happens, then the bot will instead to go the output labelled unhandled goto, or will
give an error.

Important points:
* outputs can have a special If preceded by a * which determines if they are used at all
* the special output If has no Learn
» the special output If can be put on any line that doesn't already have an If'

45 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 5.7 - If and Learning Summary
There are now several different ways the /f'and Learn columns are used, depending on whether they

appear

1)

2)

3)

4)

5)

6)

7)

in an output, input or phrase. This colourful example shows how it all fits together.

After you say something to the bot, it goes through each of the last output's inputs (and any
borrowed ones, shown in green) looking for a match. The first thing it checks is the input's
special */f (dark blue below).

For each viable input, the bot tries to parse what you said into phrases. It finds the best
matching input and starts processing it, first looking at the input's phrases.

For phrases, it first checks the If conditions and skips any variations which are false. The
Learn column contains a single variable name with an optional default value. The actual
value learned comes from the 7ext column, either the 7ext itself or the value after the ->.
This kind of learning happens first while processing the input (shown in reddish, using the
short-cut method where a single Learn appears with the first line of 7ext only).
Immediately after learning any phrase variables, the bot checks through the input's Ifs. If an
Ifis true, then the Learn is done and the Goto is followed (shown in aqua). The Learns are
executed before the Goto, so the Goto can dynamically reference learned variables. The bot
follows the Goto and immediately checks if the output has a special *If (also shown in aqua
below). If that is true, the bot uses the output. If it's false, the bot unwinds, unlearns any
Learn, and tries the next Goto.

If none of the input's Gotos work, or if the Goto is missing or goes to a non-existent output,
then the bot looks for an output labelled unhandled goto instead, or else outputs an error
message.

The bot has reached the output. For outputs, the If and Learn columns are tied to the Text
column. Only if the If evaluates as true, is the 7ext output and the variables learned (shown
in yellow). This learning happens after the Goto above.

The output can reference phrases and output phrases. These phrases can also have Ifs tied to
their 7ext and a single Learn (shown in brown).

Type

Label D. | Text If Learn Goto Acc

output

start |welcome Hi there!

input

greeting ((hello)) *mood#awful 60

((hello)) there | friendly=yes or |mood=good bot_mood
friendly=maybe

((hello)) to you | friendly=no mood=bad bot mood

((go away))

output

bot_mood That's ((nice)). |mood=good nicecount=+1 |[welcome

That's mean. mood=bad meancount=-+1

*friendly#very

phrase

hello hi->yes friendly

hello->maybe | nicecount<10

output

phrase | nice nice nicecount<2 imnice=yes

SO nice nicecount>=2 | imsonice=yes

phrase

go away go / go away friendly=no

The special *Ifs and output borrowing shown here don't do anything. They are for example only.

46 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Structural Approaches

As you've seen in this section, there are several ways to implement the same bot. The different
methods are generally trade-offs between readability and complexity. An experienced programmer
may organise a bot using lots of /fs and Learns. A novice may like to diagram their bot first, and
then implement each output and input separately. Here are some possible approaches:

Branching structure:

This structure was introduced in one of the first examples, for the bot who asked about peas. It is
recommended if you are non-programmer who is getting used to Cleverscript, of if your bot is very
sequential and specific, with each output expecting different inputs. This method does not require
any Ifs or Learns but can still produce complex bots. The disadvantage is that you may find yourself
copying and pasting a lot as the bot grows.

Output borrowing:

Output borrowing allows for less copying and pasting, while still keeping a branching structure. It is
also useful if you are creating several bots and would like to have a library of outputs and inputs
which they can all use. You can put all your common outputs and inputs into one spreadsheet, and
your bot-specific outputs and inputs into separate spreadsheets, borrowing as needed.

Multiple gotos and special Ifs:

If you are comfortable with variables, then putting all your inputs under a single output start can
avoid a lot of copying and pasting, and help to maintain consistency. You will need at least one
topic or state variable to remember what the user is doing. Though try to keep the number of
regularly used variables to a minimum, as a complex bot with many variables can be difficult to
debug.

The special *Ifs for inputs and outputs can streamline bots with lots of multiple Gotos. If your
variables have readable names and values (such as state=room1 or topic=insurance) then your
spreadsheet will be easy to follow.

You can also colour code your spreadsheet, as in the example below. You only need to export it to a
tab-delimited file when creating a bot. Your working copy can have all the features of your
spreadsheet software.

Single input or output:

At the other end of the spectrum, it is possible to develop a bot with just a single input and a single
output. For example, you could take an existing bot with 10 inputs, and put all those inputs into a
single phrase labelled ((inputtype)) which learns a variable called $inputtype$. Your single input
would just include this phrase ((inputtype)). Then you could combine all your outputs into a single
output and use If conditions (such as inputtype=friendly) to give the correct response.

Or as an alternative to /f conditions, you could use a single output which references a dynamic
phrase label such as ((answer_S$inputtype$)), and then each answer can be a separate phrase.

Doing a bot this way would produce an organised bot, but would lose out on a lot of the

functionality built into Cleverscript like Gotos. It is described here just as an example. The method
you choose will probably end up as a mixture of all the ones above.

47 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 6 — Clever Data for Small Talk

Existor's first and foremost creation is www.cleverbot.com. Cleverbot is a very popular website and
Smartphone application. Unlike Cleverscript, where all outputs are planned and scripted, Cleverbot
learns from the people who talk to it and responds with what it considers best. Consequently, it is
quirky, unpredictable and very entertaining.

Cleverbot began in the late 1980s and currently has a huge database of over 120 million lines of
conversation. It has won the Loebner Prize twice and does well on Turing Tests.

In February 2013 we added a miniature version of Cleverbot to Cleverscript. This means that, along
with all its scripted responses, Cleverscript can now also do some general low-level small talk!
Things like “How are you?”, “I'm fine thanks”, “That's great”. And you don't need to write a script
for any of it.

We call this new feature “Clever Data”. It uses a stripped down version of the Cleverbot engine,
along with a much smaller data set. Instead of 120 million lines of potential conversation, Clever
Data uses just a few thousand lines. This section describes how to use it.

Example 6.1 — Clever Data Fallback

On the Upload page, you can now choose to include some Clever Data in your bot. We will
eventually provide a drop down with several different sizes and themes of data. For now, you can
choose a small set of data from Cleverbot.

To see how it works, try uploading the example below, and be sure to include some Clever Data.
You can try chatting to them on the Cleverscript website once you have registered.

Type Label Description Text If |Learn |Goto |Accuracy

output start|welcome | The first thing |Hi there, I'm your first
the bot will say. |small talk bot!

input hello User says hello | hello 75

output hello Bot replies hello. |Hello to you too.

This example is like example 1.2 but without the fallback input (the one previously labelled
anything). The bot opens with “Hi there, I'm your first really chatty bot”. If you say “hello” it will
say “Hello to you”.

If you say anything else, it would normally go back to its output start and give its opening line
again. But with the Clever Data included, it will instead give a conversational output. If you say “hi
there”, it will reply something like “How are you?”

Note that when testing this bot on the Cleverscript website, you are only chatting to about 10,000
lines of Cleverbot data. When you publish your bot via the API, it will use more like 1 million lines
and so will it seem much more intelligent.

Important points:
* include Clever Data in your bot to let it do small talk
* if none of the inputs match, then the bot will reply from its Clever Data
* the Clever Data in www.cleverscript.com is much smaller and less intelligent than when you
publish your bot and chat it to though the API

48 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/
http://www.cleverbot.com/
http://www.existor.com/

Example 6.2 — Clever Data Variables
You can get more control over the Clever Data replies using two new internal variables:
Sclever _accuracy$ and $clever output$.

Type Label D. Text If Learn | Goto |Acc
output start | welcome Hi there, I'm your second

small talk bot!
input hello hello 75
input anything anything 0
output hello Hello to you too.
output anything $clever output$ clever accuracy>30

Sorry, I don't have a response

for that. I only scored

$clever accuracy$%.

This example is like the one above but with the fallback input put back in. When you say “hello” it
will still reply “Hello to you too.”

If you say anything else, it will trigger the input labelled anything (which has 0 accuracy) and go to
the output labelled anything. This output has two possibilities. If the clever accuracy variable is
more than 30%, the bot will deliver the clever output, or else if will say “Sorry, I don't have a
response for that. I only scored 23%.”

The Cleverbot engine inside your bot compares your whole conversation so far to previous
conversations in its database. It outputs a line from the best-matching conversation. The
clever_accuracy variable measures how well it actually matched. An accuracy of 100% would mean
that your conversation exactly matches one in the Clever Data database. In practice, this is very
unlikely to happen. In fact, the accuracy scores from Clever Data are generally lower than accuracy
scores for Cleverscript because they are comparing the whole conversation, not just the last thing
you typed. Even an accuracy of 30% can produce a reasonable reply, and the average accuracy will
increase for bigger Clever Data databases.

The clever output variable contains the actual output from Clever Data. Unlike the example above,
you now need to explicitly output this.

Important points:
» the variable clever output contains the Clever Data reply
» the variable clever_accuracy stores how well the Clever Data reply matched
* clever_accuracy scores are generally low

49 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 6.3 — Reaction and Emotion

The avatar at www.existor.com also uses the full 140 million rows of Cleverbot data. Notice that
she smiles or frowns when she says things. This is because every Cleverbot response comes with
emotion and reaction attributes. Clever Data has inherited this useful feature.

It means that nearly every Clever Data reply also includes a pre-computed emotion and reaction.
For example, if the Clever Data reply is “who are you?” the emotion might be curious. These are
available to your script as variables. Here's an example:

Type Label D. | Text If |Learn Goto |Acc
output start | welcome Hi there, I'm your third small talk bot!
input hello hello 75
input anything anything 0
output hello Hello to you too.
output anything $clever output$ Reaction: $reaction$

with tone $reaction_tone$. Emotion:

$emotion$ with tone $emotion_toneS$.

When you say “hello” to this bot, it will reply with the output labelled hello and say “Hello to you
too.” If you say anything else like “hi there” then the output labelled anything will deliver the
Clever Data reply via the variable clever output. Clever Data will also set six internal variables:
reaction, reaction_tone, reaction_degree, emotion, emotion_tone and emotion_degree.

The reaction and emotion are text strings, things like winking or happy. A full table of all the
possibilities is shown below. Each one also has an accompanying tone, which is a number from -2
(for a very negative emotion or reaction) to 2 (very positive).

These variables are intended to be used for controlling visual avatars, because when you are ready
to put your bot on your own website, you may want to give it a face as well. This could be a single
image, or a set of images which change depending on the emotion or reaction.

There are approximately 50 reactions and 70 emotions, so in theory there are over 3000 unique
combinations of reaction and emotion, and your avatar could have a different look for each (though
in practice many of the combinations would not occur). Furthermore reaction_degree and
emotion_degree give a rough estimate of the degree or strength of the reaction/emotion.
Alternatively there are 25 combinations of emotion_tone and reaction _tone. (In fact, this is how the
face at www.existor.com is controlled. It uses sophisticated custom software to morph between
different emotion and reaction images.)

These six variables are only set when your bot is asked to deliver a Clever Data output or compute
the Clever Data score. This means that you can also use the variables in your scripts. So that when
your bot gives a scripted reply, you can set an emotion or reaction attached for controlling an avatar.

Important points:
* Clever Data includes a reaction and emotion, listed above
* it also provides reaction tone and emotion tone, numbers from -2 to 2
» it also provices reaction_degree and emotion_degree as rough percentages from 0 to 100
» these variables are only set when Clever Data is used in an interaction
» this means that you can also set them in scripting and they won't be overwritten

50 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/
http://www.existor.com/
http://www.existor.com/

Reactions and emotions

Below is a list of all the reactions and emotions that can occur within Clever Data along with their
tones. Please note that these reactions and emotions are mostly programmatically computed, so they
may not reflect who a human would actually feel if having the same conversation.

Reactions Tone Emotions Tone Continued

aah 0 agreeable 0 singing 0
agreement 0 alert 0 sleepy 0
amazed 2 amused 1 smug 0
annoyed -1 angry -1 stubborn 0
appreciation 1 apologetic -1 supportive 1
belief 0 argumentative -1 sure 0
confused -1 assertive 0 sweetness |
cool 0 bored -1 sympathy 1
crying -1 calm 0 thoughtful 0
disagreement -1 concerned 0 tired 0
disappointed -1 contemplative 0 tongue out -1
disbelief 0 curious 0 uncomfortable -1
disgust -2 dancing 0 unsure 0
disinterested 0 determined 0 very happy 2
displeased -1 devious -1 very sad -2
eek -2 didactic 0 victorious 0
embarrassed -1 distracted 0 winking 0
forceful 0 doubting -1 worried -1
frowning -1 excited 2

frustrated -1 flirty 0

genuine smile 1 forgetful 0

giggling 1 furious -2

ha 1 gentle 0

impressed 1 grumpy -1

indignation -1 guilty 0

infuriated -2 happy 2

interested 1 hatred -2

knowing 0 joking 0

look down 0 jumpy 0

look left 0 lazy 0

look right 0 love 2

look up 0 mean -1

nasty goodbye -1 mocking -1

nasty laugh -1 modest 0

nice goodbye 1 naughty -1

nice hello 1 negative -1

nice laugh 1 nice 1

none 0 none 0

pleased 1 nosey 0

relieved 0 positive 1

reluctant hello 0 proud 1

sarcastic smile -1 questioning 0

scared -1 relaxed 0

shocked -2 reluctant 0

sigh 0 righteous 0

sneering -1 robotic 0

sniggering 0 rude -1

surprised 0 sad -1

uncomfortable -1 sarcastic -1

unimpressed 0 serious 0

uninterested 0 shouting -1

upset -1 shy 0

wry smile 0 silly 0

51 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 6.4 — Influencing Clever Data

There are a few other variables relating to Clever Data. The variables interaction I up to
interaction_20 store the last twenty user/bot interactions. The variable interaction 1 stores the most
recent thing the user said, and interaction 1 _other stores what the bot replied. These variables
provide Clever Data with its conversation history, so it can match the current conversation against
previous ones.

The variable clever match allows you to directly influence how the Clever Data chooses its best
match. You can use the variable clever match to tell the Cleverbot engine to favour a reply
containing your chosen word or words.

Type Label D. | Text If |Learn Goto |Acc
output start | welcome Hi there, I'm your fourth clever match=human

small talk bot!
input hello hello 75
output hello Hello to you too.

This bot is like the first example in this section, except that it will favour Clever Data replies that
contain the word “human”. It's really just a small nudge in the right direction.

For instance, if you ask this example bot, “are you a computer?”, it has several possible replies
including “I'm not sure.”, “Of course.” and “No, I'm a human.” Normally, the Cleverbot engine is
roughly equally likely to choose any of these responses. But if the clever match variable is set to
“human”, then it will favour the latter one.

You can therefore use the clever match variable to give the Cleverbot engine at hint at the current
topic of conversation. Then if the user asks something not covered by your script, the Clever Data
output will attempt to stay on topic.

Later on in the conversation the effect becomes less noticeable because there are other factors
determining the best reply, such as the context provided by the conversation history.

This effect is more noticeable with commonly asked questions in bigger data sets, because the
short-list will be more uniform and the presence of the clever match word or phrase will have more
of an impact.

Important points:
* the variable clever match can influence the Clever Data output
* you can use this to hint at a topic for the small talk which Clever Data engages in
» the effect is more noticeable for common questions in big data sets early in a conversation

52 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Advanced Example 6.5 — Influencing Clever Data Even More

From July 2013 there is a further way to influence Clever Data, using a new Type called clever
adjust. As above, this adjustment happens in the latest stages of Clever Data, when your bot is
trying to choose between a handful (20-50) of candidate rows.

Clever adjusts are tied to a specific input. However they behave more like a phrase as they learn a
percentage adjustment to the clever accuracy. For example:

Type Label D. | Text If |Learn |Goto Acc

output start | welcome Hi there, I'm your fifth small talk bot!

input hello hello / how are you converse | 75

clever adjust |hello_adjust ((good))->-5 60
how are you->10

input fallback anything else converse | 0

output converse $clever output$

phrase good good / ((really)) good / great / fine

phrase really really / very

If you type “hello” or “how are you”, this will trigger the input labelled hello. As usual, this will
follow the Goto and the bot will start to deliver the output labelled converse which tells it to deliver
the Clever Data variable $clever output$. At this stage the bot will go back to the input and apply
the first (and only the first) clever adjust it finds, which is hello adjust in this case.

If the potential reply matches with 60% accuracy or more, then an adjustment is applied. If it
matched against ((good)), then the score is reduced by 5%. So if the clever accuracy would have
been 48%, it will become 43%. Similarly if it matches “how are you”, it will be increased by 10%.

It means that this bot is likely to reply to your greeting with something like “how are you?” and
very unlikely to say “good”, “very good”, “really good”, “great” or “fine”. Note that after the first
time it says “how are you?” there is a punishment for repeating the same thing again, so it may well
not say “how are you?” again but “how are you today?” or similar.

With a negative percentage, this feature allows you to essentially rule out certain outputs and have
the Clever Data automatically choose the next best alternative, without you having to script the
alternatives, or filter the output yourself (filtering is discussed in the next section). With a positive
percentage, you can favour chosen outputs.

Important points:
* the new Type called clever adjust can be used to adjust scores at the final stage
* you can use it favour or demote certain replies
» the clever_adjust does not need a Learn as for efficiency, no actual learning is done
» if'the variable $clever output$ is included within other text, this feature may not work

53 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 7 — Filtering

Filtering is a new Cleverscript feature introduced in February 2013. It allows you to modify the
user's input before it is matched against your inputs, and to modify the bot's output after it has been
formed.

For example, you could use an input filter to strip extra politeness from whatever the user says, so
that your individual inputs don't have to worry about it. And you could use an output filter to change

the output from Clever Data, replacing the word “human” with “alien” or anything else.

As with all phrases, filters operate on parts of words. So a new syntax involving a colon : is
introduced to make sure that filfers only match whole words.

54 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 7.1 — Input Filtering to Remove Text

An input filter is really just a special type of input. It can be associated with the output start or with
any other output. It has Text and an Accuracy but no Goto. In its simplest form, it uses the
unimportant phrases feature (the ! inside a phrase reference) to remove text from the user's input.
Here is an example:

Type Label Desc | Text If Learn |Goto |Accuracy
output start | welcome Hi there, I'm your first
filtering bot!
input filter |please filter ((:!please:)) 75
input say hello say hello 75
output say hello Hello.
phrase please please / plz

The input filter in this example, will strip the string “please” or “plz” from the user's input, before
matching it against the input labelled hello. So whether you type “say hello” or “say hello please” or
“plz say hello”, the output will be the same. The bot will reply “Hello.” with 100% accuracy.

The Accuracy determines how well the entire input filter must match the user's input before being
activated. There are implied wildcards around the filter, so actually it is comparing ~ ((!please)) ~
against the user's input. If that matches at least 75%, then it removes the unimportant ((/please))
phrase from the user's input. (Internally, it is not really adding the wildcards; it has a more efficient
method, but is behaving in a similar way.)

Each filter runs multiple times, so even if you said “please say hello plz please please!”, all the
“pleases” would be removed. It is therefore recommended not to use too low an Accuracy for input
filters, so that they don't mistakenly remove something important. The 75% here means that some
very close mis-spellings like “pleasse” would also be removed.

Note that input filters would normally also remove parts of words, so if you typed “say helplzlo”, it
would still remove the “plz”. This is sometimes useful, but can often lead to unintended confusion.
So the : marks tell the bot to only remove/replace a whole word. The : at the beginning matches the
start of a word (or the start of the input) and the : at the end matches the end of a word (or the end of
the input). In this case, the “plz” in “say helplzlo” will not be removed.

Input filters and phrases within input filters can also have Ifs and Learns. These behave as they do
in phrases.

Important points:
* input filters can be used to remove unnecessary text from the user's input
* input filters can remove parts of words
* use: at the beginning and/or end to remove/replace whole words only
* any unimportant phrases such as ((/please)) are removed
* input filters run multiple times
* input filters do not have a Goto
* input filters can have Ifs and Learns, which behave in the same way as phrases

55 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 7.2 — Filters Between Inputs

You can have more than one input filter and they can appear before or after inputs. Input filters are
processed in the order they appear in the spreadsheet, changing the user's input as they go. They can
also have special Ifs attached to them, making them conditional, as shown in the rather contrived
example below.

Type Label Desc | Text If Learn Goto | Accuracy
output start | welcome Hi there, I'm your mean=no
second filtering bot!
input unfriendly scram / go away mean=yes 75
input filter |please filter ((:'please:)) *mean=no 75
input hello say hello 75
output unfriendly That's not nice.
output hello Hello.
phrase please please / plz

The input filter in this bot appears after the first input labelled unfriendly. So if you say “go away
please” it won't strip off the “please” and won't match the input. But if you say “say hello please”,
then the “please” will be removed before the bot gets to the input labelled hello, and the bot will
reply “Hello.”

If you say “go away”, it will learn the variable mean as yes and the input filter will become inactive
because of its special If condition, which checks if the variable mean is no. So if you then say “say
hello please”, the “please” won't be removed, the input labelled hello won't match and the bot will
return to its output start. This will set mean back to no and the whole cycle can restart.

During processing, the variable filtered input contains the filtered input at that line. At the end of
processing, filtered input contains the input with all filters applied.

Important points:
* input filters are applied in the order they appear in the spreadsheet
* input filters have no goto but can have special Ifs
* the variable filtered input contains the filtered input while processing

56 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 7.3 — Input Filtering to Replace Text

Input filters don't just have to remove text. They can also replace it with something else. This is
accomplished with phrase learning. If the unimportant phrase within the input filter has a Learn,
then the learned value is used as the replacement text.

Type Label Desc | Text If |Learn Goto | Accuracy
output start | welcome Hi there, I'm your third
filtering bot!
input filter |please filter ((:'please:)) 80
input filter |say filter ((:!say:)) 80
input hello say hello 80
output hello Hello.
phrase please please / plz
phrase say say / tell me / repeat command=say

This bot has two input filters. The first one labelled please filter is the same as in the previous
examples, it removes the word “please” or “plz”. The second filter labelled say filter is different

b3 b

because the phrase ((say)) has a Learn. It replaces the word “say”, “tell me” or “repeat” with “say”.

If you tell this bot “please tell me hello”, then the input filter 1abelled please filter first strips the
word “please”. Next, the input filter labelled say filter matches the word “tell me” and learns the
variable command as the word “say”. This value is then put back into the input string, replacing
“tell me” with “say”. The input that is finally seen by the input labelled hello is simply “say hello”.

The same effect could have been achieved by just putting ((say)) hello into the input labelled hello.
But then I wouldn't have been able to show off this technique.

Replacement input filters are useful in complex bots which need to normalise the user input before
processing it. They allow complex bits of processing to be done once in an input filter instead of
lots of times in each individual input. The technique is also useful for output filters, shown in the
next example.

Important points:
* input filters can also replace text
* any phrases with Learns within input filters replace rather than remove
* the replacement value is the value of the variable that was learned
* the name of the actual variable doesn't really matter unless you want to use it elsewhere

57 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Example 7.4 — Output Filtering

Output filters work in the same way as input filters, except they operate on what the bot is just
about to say. Just before a bot is about to deliver its output, it looks for any output filters belonging
to the output start or to that output or anything it borrows from, and it processes them in the order
they appear in the spreadsheet.

Output filtering is useful when combined with Clever Data, as in this example:

Type Label D| Text If | Learn Goto |Acc
output start |welcome $clever output$ clever match=human

output filter |human filter | |((:'human)) 75
output filter |name filter ((my name is)) ((!bot_name)) 75
phrase human human / person replace=monster

phrase my name is my name is / [am

phrase bot name ~ name=Evie

This bot doesn't have any of its own inputs or real outputs. It is just a thin layer on top of Clever
Data. The output start delivers the variable clever output which comes straight from Clever Data.
The variable clever match means that it will favour statements containing the word “human”.

This bot has two output filters. The first catches any mention of the word “human” and replaces it
with “monster”. It works just like the input filter from the previous example. It even has an
Accuracy. The : means that the word being replaced has to start with “human”, so “humans” will be
replaced by “monsters” but “semihuman’ won't turn into “semimonster”. In output filtering,
capitalisation is automatic if “monster” appears at the start of a sentence.

The second filter looks for things like “my name is” and replaces the name part with “Evie”.
This shows another useful aspect of filtering — not everything in the filter needs to be filtered. In
this case the “my name is” part will be left alone, and only the actual name will be replaced. This
output filter is very useful if the Clever Data you are using happens to have learned a name for itself
which you'd like to override.

You can test this bot by trying to get it to say the word “human”. For example, ask it “Are you a
human or a robot?”” The second output filter is much more difficult to trigger as the Clever Data
shouldn't ever say it's own name. So alternatively, replace the output start with “I am a human” or
“My name is Alan” to guarantee seeing the replacement filters in action.

Important points:
* output filters can remove or replace text in outputs
» ifareplaced word appears at the beginning of a sentence, it is automatically capitalised
* output filters belonging to the output start are always processed
* output filters belonging to the output being given are also processed
* along with output filters belonging to any borrowed outputs
* output filters have an Accuracy and a Special If
* not all text in input filters and output filters has to be removed or replaced
* output filters can have Ifs and Learns which behave in the same was as phrases

58 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Section 8 — Testing and Using Your Bot
The very first example in this manual briefly described how to turn your spreadsheet into a bot you
could chat with on the www.cleverscript.com website.

This section expands upon that. It takes you through the steps of registering, uploading your
spreadsheet, chatting to your bot, buying interaction credits, publishing your bot on our servers and
communicating with your bot through our API.

8.1 - Register and Login
www.cleverscript.com is Cleverscript's home. It's where you can upload your spreadsheets and then
chat with your newly created bots.

Registering

If not, please visit www.cleverscript.com and click the Register link in the right column, below the
Login boxes. A small form will popup asking you to choose a username and enter your name and
email address. We will then email you a password.

Login

Once you've got your password, return to the website and login using the boxes on the right. You
will arrive at the “Your bots” page. You now have access to the Upload, Chat, Buy Credits and
Publish pages.

8.2 - Manual

This section is only here so that the section numbers correspond to the numbers on the Your Bots
page. As you are currently reading it, there's not much more to say about the manual right now.

59 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.3 - Upload your Spreadsheet

The Upload page is where you upload your spreadsheet files. There are several boxes, all described

below. The page looks something like this:

Upload

Use this page to upload your spreadsheet as a tab-delimited file.

how to create your spreadsheet. After uploading, yvou can chat to it.

Cleverscript spreadsheet 1: | Choose File | no file selected
Cleverscript spreadsheet 2: | Choose File | no file selected

Clever data: | none aol

Clever data spreadsheet: | Choose File | No file selected
Bot name: (letters/numbers/_ only)

Version: | 3.000 CD - |

Messages: | errors only s |

Encoding: | English only or UTF-8 % |

[Upload |

Saving your spreadsheet

The first step is to save your spreadsheet in tab-delimited format, which means the file name will
end in tsv, txt or csv, and not xIs. Here are instructions for some common spreadsheet applications:

Open Office 3 Calc

From the File menu, choose Save As

Change the File Type to Text CSV

Check the Edit Filter Settings box below that
Click Save

Choose Replace if it asks you

Choose Keep Current Format if it asks you
Under Character set choose UTF-8 if needed
Change the Field delimiter to {Tab}

Click OK

W XA W=

Microsoft Excel
1. From the File menu, choose Save As

2. Change the Save As Type to Text (tab delimited) or Unicode if it contains non-English

characters
3. Click Save

60 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

4. If it asks about only saving the current worksheet click OK
5. Ifyou saved it as Unicode, choose the UTF-16 encoding when uploading

Google Docs Spreadsheet

From the Google Docs File menu, select Download as and then Text (current sheet).
Your tab-delimited text file will be displayed in a new window, go to this window
From your browser’s File menu, select Save As or Save File As

Name your file, specifying the file type as a Text File (*.txt) if possible

Click Save

Nk W=

Spreadsheets

The first two boxes are for uploading your spreadsheet(s). You can upload more than one, so you
could keep a phrase library in one spreadsheet, and your inputs and outputs in another. Select the
file (or files) you have created from your computer. As above, make sure they are in tab-delimited
format. Any other format, like an Excel XLS file or comma-delimited text, will not work.

Clever Data

You can choose whether your bot should have some generic small talking ability, as described in the
previous section. The options here are generally themed. The bigger databases are more intelligent
but a bit slower. Note that the Cleverscript website uses much smaller versions of these databases
than the API. So once you publish your bots, they will appear more intelligent.

Clever Data Spreadsheet

Advanced users can upload a spreadsheet containing their own Clever Data instead of using one of
the provided choices. The spreadsheet should contain conversations. The output column is what the
bot will say in response to a user's input. There are several different ways to arrange the spreadsheet
columns:

1) input, output, reaction and emotion, where a blank input specifies the start of a new
conversation

2) conversation reference, line reference, context, input, output, reaction, emotion where
context is the statement that led to the input which led to output

3) output only where each output is used as the input for the next line in the spreadsheet and a
blank line signifies the start of a new conversation (a single line by itself is ignored)

4) output only as above but only lines prefixed by “ 7 or “botname:” are used as actual
outputs, which actually allows for a one column alternating format of input then output, the
botname must (case insensitively) match the bot's name as specified under “name your bot”

If you would like to be able to use this facility, please let us know.

Name your bot

Choose a name for your bot. Only letters, numbers and underscores are allowed, no spaces or other
punctation. Your customers will never see this bot name. It is for your and the website's reference
only.

Version

The version field only appears if you have published bots using more than one version of the
Cleverscript software. When we make major improvements to the software, we increase the version
number. This allows bots created using a previous version to still run through the API. If you see
this field, you should generally always choose the latest version.

Messages

The screenshot above was taken just after a spreadsheet was uploaded. It shows that there was an
error in one of the Gotos. These messages are very useful for debugging. There are various levels of

61 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

messages including just errors, or warnings, statistics and timing too. If your bot does not work as
intended, this is the first place to check.

Character Encoding

Cleverscript works only with UTF-8 text. If your bot contains only English numbers and letters,
then it is already compatible (as ASCII is a subset of UTF-8) and you don't need to worry about
this. If it contains any non-Latin characters, like Greek or Cyrillic or accented letters, then you
should try to convert your spreadsheet into UTF-8 before uploading.

However, we're aware that spreadsheet software like Excel can make it very difficult to save in
UTF-8 format, so we are able to convert from a limited number of other encodings. Excel's Unicode
option saves as UTF-16 so you can convert from this. Or else, you have to know what encoding you
are using. If your favourite encoding is not in the list, please let us know and we will add it. Note
that this may not work in older browsers and you may have to upload in UTF-8 anyway.

Upload

Press Upload when you're ready. It will display any error messages (if you wanted them) and
provide a link to chat with your bot.

62 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.4 — Chat to Your Bot

After you have successfully uploaded your bot, you can chat to it. The chatting page looks like this:

Chat

MNow you can chat to your bots or try one of the bots from the manual. When you are
chatting, type what you would like to say in the You box and press Say it. The bot’s reply

will be shown in pink, with all the variables on the right.

Choose a bot: | mytest -

Messages: | timing too 3

| Restart chat |

Bot Hi there, I'm your third pea-crazy hot! response=Hi there, |'m your third pea-crazy botl
interaction_count=1

input=

input_label=
predictedinput=
accuracy=
output_label=welcome
errorling=

You: | (Say it |

Oms total time taken for Loaded phrases
Learning wariable input as

Learning wvariable interaction_count as 1

Choose a bot
If you click the “chat” link straight from the Upload page, your bot will start chatting to you right
away. Otherwise, choose your bot from the list.

Messages

There are also various levels of messages when chatting to your bot. This ranges from no messages
at all to a very detailed output listing all inputs it tries to match against and all the variables learned
along the way.

Start at output label

Advanced users may see this optional box, which allows you to enter an alternate output label
(rather than the output start) for the chat to start at.

63 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Start chat
Press the “Start chat” button to start a chat. If a chat is already in progress, the button will say
“Restart chat”.

Your conversation

During a chat, your bots statements are shown in pink and yours in white. On the right of the pink
boxes is a list of all the variables within your bot at that moment in the conversation. This list starts
with the many system variables and has your bot's own variables after that. For example, the
variable interaction_count starts at 1 and will increase as the chat progresses.

Type what you would like to say next to the “You” on the bottom left. On the bottom right is a box
for overriding variables. For example, if you have a variable called colour you could type
colour=green into this box. To set multiple variables, use the same format as in the spreadsheets:
colour=green and size=large.

Press “Say it” or the Enter key to say something. The page will refresh and your bot's reply will be
added to the bottom of the conversation.

64 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.5 — Buy Credits

After you have created your bot, you will probably want to use it somewhere. Cleverscript bots can
be used in websites, SmartPhone apps, console games and computer games.

Apps and games

For SmartPhone apps, console games and computer games, we will provide the Cleverscript softare
as a library which you can include in your project. Your bot will then be downloaded from the
Cleverscript website. Cilck to the next section about publishing to find out how to do that.

Website usage

To use your bot on your website, we provide a JSON API. With a few lines of Javascript, your
website will communicate over the Internet with our servers, sending your bot some input and
getting the reply.

Every user input and reply is called an interaction. When you are having a conversation, this is
represented by the internal variable interaction count.

Interactions credits

We charge per interaction. Interactions must be bought in advance from the Buy Credits page of our
website. Current pricing is available on the prices page on our website. Interactions are sold in
preset packages. Our website currently integrates with PayPal though we will add other providers
soon. All prices are in US dollars.

Extra credits
We provide 1000 extra credits as part of your first purchase. This is to cover any credits you may
use in integrating our API.

Buy credits

Decide the quantity you would like and press the Pay button. You will be forwarded to our payment
provider to take payment. After a successful payment, you can return to our website and visit the
Publish page.

Low credits
You can visit our website and top up your credits at any time. We will send your an automated
reminder email when your credits are running low.

If your credits run out, your bot may return an error message to your users, something like “This

Cleverscript bot can not be used from this website.” We will try to contact you before taking this
step.

65 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/about/pricing/
http://www.existor.com/

8.6 — Publish

When you are ready to make your bot live and available, so that your customers can chat to it, visit
the publishing page. For website usage, this page will publish your bot to our servers and give you
an API key. For app and console usage, we will provide a file to embed in your project. The publish
page looks like:

Publish

If vou would like to use your bot on your website, you must first publish
servers and then communicate with it using our JSON APL. Use the forn
and obtain your APl key. APl implementation details can be found in cu

want to use your bot in a Smartphone or console game, please contact

Your APl key for this bot: in36f81ceB373aebe 79%fect67b3c23ad518b

T W a &

Interaction credits: 1,100,820
Choose a bot: | mytest =+

Where will you use this bot: www.cleverscript.con
Action: | just show API key :

Co

Interaction credits
The publishing form first tells you how many interaction credits you have remaining. If you have
any live bots, the number will be a link to a statistics page (discussed below).

Choose a bot
As on the chatting page, you can choose the bot you would like to publish.

Where will you use this bot

If you are connecting to our JSON API from Javascript, then enter the domain name of the website
where your bot will be used, such as www.cleverscript.com. If you will connect to our API directly
from a server using a language like PHP, then enter the IP address, such as 123.123.123.123. Both
methods are explained in the API section. Note that your bot will only work from this address.
And if you change this address, your API key will also change.

Action
The action field has several options:

Download file

66 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/
http://www.existor.com/

If you have told us that you will be using your bot in an app or game, then the “download file”
option will appear first. This will give you a link to directly download your bot's file. The file is
essentially a database which you can embed into your application.

Just show API key
Choose this option to see your current API key for this bot. Each bot will have a separate API key.
As above, the API key will change if you put your bot on a new website.

Publish to live servers

Publishing involves copying your bot's file to our servers. The website will report if the publishing
was successful and how many servers it was published to. We have several load-balanced servers to
make sure your bots always respond quickly. The same API key will work on both sets of servers.
You will only see this publish option if you have purchased interaction credits.

Change API key
Use this option to change your API key. After changing the key you must republish for it to take
effect. Once you have republished, your old API key will no longer work.

Unpublish from servers
If you would like to remove your bot from our servers, choose this option. It will remove it from the

live servers. You will have to republish to get it to work again.

Delete bot
This will delete your bot from your “choose a bot” list and unpublish it from our servers.

67 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.7 Javascript API

We provide a JSON API for interacting with your bot over the Internet. There are two main ways to
use this API: in the browser using Javascript, or on a server using a language like PHP. You can
obtain your API key on the Publish page of www.cleverscript.com. This section shows how to set
up your own Javascript API chat, but we strongly recommend using our library at
www.cleverscript.com/CSL/cleverscriptapi.js.

The Quickest Way
When Publishing, enter your website's domain for the “where will you this bot™ question. Then in
your web page, you just have to add 2 lines of HTML to get a fully working conversational bot:

<script type="text/javascript"
src="http.//www.cleverscript.com/CSL/cleverscriptapi.js"></script>
<script type="text/javascript">ShowCleverscriptForm ("YOUR_API KEY');</script>

This Javascript library that does it all for you — including creating a form and fading between
reaction and emotion images if you are using Clever Data. The library also handles very long URLs,
which can happen if your bot has lots of variables which give it a long state variable. URLs over
2048 characters don't work in some versions of Internet Explorer. The library fixes this for [E8 and
above by using window.postMessage.

Occasionally this library is modified, so you can refer directly to the copy on our servers if you
would always like the latest version. However, we can not guarantee that the format will always
stay the same (though we will try to make it as backward compatible as possible) so you may want
to copy the library and use from your own servers.

With Your Own Form
You can also use our library with your own form, by calling CleverscriptSetup and
CleverscriptInput and using your own callback function, like this:

<form onsubmit="CleverscriptInput (this.userinput.value), return false;">
You: <input name="userinput” type="text"/></form>

<script type="text/javascript” src="/path/to/cleverscriptapi.js"></script>
<script type="text/javascript">

function mycallback (data) {alert ('Bot replied: ' + data.output),}
CleverscriptSetup ('"YOUR _API KEY', {callback_after:mycallback}),

</script>

Do-it-yourself Javascript chat

You don't have to use our library. Implementing a basic version of our API yourself is easy. As with
other JSON APIs, it involves inserting a <script> tag into your web page with a Javascript callback.
For example:

<script type="text/javascript">function CSProcess (data) {alert (data.output),}</script> <script
type="text/javascript" src="http://api.cleverscript.com/csapi?

key=YOUR_API KEY&input=Hello&callback=CSProcess"></script>

You can copy the code above into an HTML file on your server. Insert the API key for your bot into
the URL and view the page in your browser. It will only work from the domain name you specified

during the publishing process.

The URL for our API is http.//api.cleverscript.com/csapi.

68 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/CSL/cleverscriptapi.js
http://www.existor.com/

If successful, the above code should call the CSProcess function which will cause a Javascript alert
with your bot's response to the input “Hello”. If you try to view this code from a different website,
you will get a response like “This Cleverscript bot can not be used from this website.”

The data object

The callback function receives an object as its only argument. The object contains all the variables
from the bot's response. The variables are the same as the ones in the pink box on the Chat page.
You can show all those variables by changing the CSProcess function to:

function CSProcess (data) {var r=""; for (var p in data) r +=p + ": ' + data[p] + "\n'; alert (v),}

You can see that the output property is the first and most important bit of data, but you also have
access to all your bots variables. The second most important one is the c¢s variable. That contains
Cleverscript's internal state, including where it is in its spreadsheet and the value of all its variables.
You must pass this ¢s variable back into the API the next time you call it.

So your next call the API will look something like:

p—)

<script type="text/javascript" src="http://api.cleverscript.com/csapi?
key=YOUR APl KEY&input=Hi&cs=YOUR _CS VARIABLE&callback=CSProcess"></script>

Overriding variables

As on the Chat page, you can also override variables in the API. To override a variable, prefix it
with an underscore. For instance, if you want to force the variable $colour$ in your script to have
the value red, then use:

<script type="text/javascript” src="http://aiapi.cleverscript.com/csapi?

key=YOUR_API KEY&input=Hellooooooooo&cs=YOUR _CS VARIABLE&callback=CSProcess
& colour=red"></script>

This is also very useful if you'd like your bot to start somewhere other than the output start. You can
pass in output label=other place to override the internal $output label$ variable. This is also built
into our Javascript library as an argument to ShowCleverscriptForm (for the first interaction) and
CleverscriptInput for later interactions.. See the Javascript file for how to do it.

Complete chatting bot

Below is HTML and Javascript for making a complete do-it-yourself Javascript chatting bot. Save
this to an HTML page on your server to try it out. It has two Javascript functions: CSInput takes the
user input and constructs a <script> tag like the ones above. It then appends it to the <div> at the
top of the page, which causes the <script> tag to be interpretted by the browser, calling the API.
CSProcess then receives the data and adds your input and the bot's reply to the same <div>.

<div id="reply"></div>

<form onsubmit="CSInput (this.userinput.value),; this.userinput.value =" return false;">

You: <input name="userinput" type="text" size="40"/> <input type="submit" value="Say it" />
</form>

<script type="text/javascript">
var CSSTATE = "';
function CSProcess (data) {
if (data.input) document.getElementByld ('reply’).innerHTML += "You: '+data.input+'
';
document.getElementByld ('reply’).innerHTML += 'Bot: ' + data.output + '
';
CSSTATE = data.cs,
/
Sfunction CSInput (userinput) {
var key = 'YOUR_API KEY",

69 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

var url = "http.//api.cleverscript.com/csapi';

url += "?key="+ key + '&input="+ encodeURIComponent (userinput),
url +="&cs="+ CSSTATE + '&callback=CSProcess’;

var el = document.createElement ('script’);

el.setAttribute (‘action’, 'text/javascript’); el.setAttribute ('src’, url);
document.getElementByld('reply').appendChild (el);

/
CSInput ("),
</script>

When you first load the page, the function CSInput is called with a blank string. This causes the API
to get the bot's opening statement. After that the global variable CSSTATE is used to store the
Cleverscript state between calls. The state is saved in the CSProcess function and used again in
CSInput.

Server-side chat
You can also use our JSON API directly from your server. In this case, you have to enter your
server's [P address into the “where will you use this bot” box, and leave oft the callback when you
make the API call. The API will then return a raw JSON variable which can be parsed. Here is an
example in PHP. This will retrieve the data, decode it using the PHP function json_decode and
display the results:
<?php

Sdata = file get contents ("http.//api.cleverscript.com/csapi?
key=YOUR APl KEY&input=hello&cs=YOUR CS VARIALBE'),

var_dump (json_decode ($data, true));
7>

Animated Avatar
From April 2014, you can use our animated avatar with your Cleverscript bot. This is the same
avatar which appears at www.existor.com and in several very popular YouTube videos.

To use the avatar on your website, you need to contact us first and send us your website address. If
approved, we will send you the SWF file you need. Then you simply pass in the name of this SWF
file into ShowCleverscriptForm function.

Note that each interaction with an avatar costs more than 1 credit. See the prices page for current
pricing.

70 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.cleverscript.com/about/pricing/
http://www.existor.com/
http://aiapi.cleverscript.com/csapi
http://www.existor.com/

8.8 - Statistics

We provide some statistics about your Cleverscript usage on our servers. These are only available
24 hours after you first publish to our servers and people start chatting with your bots. This only
applies to website/Internet usage, not app/console usage.

There is a general stats file accessed from the Publish page (click the number of credits you have
left) or the Statistics page. Each bot also has its own stats file, accessible form the Statistics page.
Stats are compiled at midnight GMT.

Statistics are shown using the Webalizer package. They include monthly, daily, hourly,
country/domain and other common website stats. Below is a sample of daily usage stats.

Daily usage for January 2813
g
2 2
==
~
i
=
[Ty
~
ml |
(=]
(ny]
(T = Bkl = mmﬁmm__ [D §
g
= 2
.
=
-
=
.
| 1 :
= = — o _ - 2
1 2 34 5 o 7 8 9401112434445 16171819 2021 222324 25 260 27 26 29 30 31

These stats are provided as a monitoring device, so you can see where your credits are being used.
We encourage you to keep your own stats as well.

71 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.9 — Android and iOS APIs

Our Android and 10S APIs allow you to embed your bot into an Android or iOS app. They are very
different from the Javascript API as that mostly deals with HTML and forms. They are however
very similar to each other, so they are presented together, with different font colours for Android or
108 specific instructions.

Tell us

First you need to tell us you would like to use your bot in an Android or iOS app, and agree to our
licensing and costing. We will then send you library files for including in your app, and enable you
to download the necessary database files from the Publish page as above.

Android instructions
We will send you two files: a library ending in .so and a .jar file for the headers.
* Create the /libs/ and /libs/armeabi/ directories if not there
* Copy cleverscriptapi.jar into /libs/
* Copy libcleverscriptapi.so into /libs/armeabi/
* Add import com.cleverscript.android. *; to your Java
* Run initial test (below)
* Visit the Publish page, enter your package name and download your bot's database files
* Copy db file into /assets/mybot.db.jpg
* Copy dbe file into /assets/mybot.dbe.jpg

iOS instructions

We will send you three files: a library for the simulator (libCleverscript-simulator.a including 1386
and x64 86 architectures), a library for the device (libCleverscript-device.a including armv7,
armv’7/s and arm64 architectures) and a header file (CleverscriptAPLh):

* Right click the project name (eg MyApp) at the top of Navigator area on the left and choose
“Add Files to MyApp”

* Add all the files we sent you — both libraries and the header file. Note that when you release
the app, you can remove the libCleverscriptAPI-simulator.a library; it is just for testing on
the simulator. When compiling with both you will probably get a warning about missing
architectures - this is okay, it's because the simulator doesn't recognise the device's library
and vica versa.

* Click the project name, select the appropriate Target (in the middle panel of XCode), select
the Build Phases tab, open the “Link Binary With Libraries” section and click +

* Add libstc++.dylib and libsqlite3.dylib to enable your project to use our C++ library and
your bot's SQLite database

* You may want to move the libraries and dylib files into the Frameworks folder or to a new
group to keep your files organised.

e Add import "CleverscriptAPL.h"; to the top of your main App delegate source file

* Run initial test (below)

* Visit the Publish page, enter your package name and download your bot's database files

* Add the db and dbe files to your app

Initial test
After adding the library, you can run an initial test to make sure the API works by outputting a reply
from the API to the log.

For Android, you must pass the constructor your application's context. The output goes to LogCat:

CleverscriptAPI cs = new CleverscriptAPI (getApplicationContext());
Log.i ("CSANDROID", "From API: " + cs.sendMessage ("hello world!"));

72 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

For 108, add the following to your app's didFinishLaunchingWithOptions method or somewhere
similar. The output goes to the NSLog:

CleverscriptAPI *cs = [[CleverscriptAPI alloc] init],

NSLog (@"From API: %@", [cs sendMessage: @ "hello world!"]);

If successful it should say “From API: no database loaded” in the log.

Prepare to download your bot

To test your API for real, you will need to first obtain your bot's database files and API key. To do
this, go to the Publish page on the Cleverscript website and choose your bot. The “where will you
use this bot?”” question is important as your API key won't work unless it is correct:

For Android, enter your package name. This appears at the top your main Java file, something like
“com.example.myapp”.

For 108, enter your app name. To find this, click the project name, select the appropriate Target,
click Summary and look for the Bundle Identifier. This will be something like
“com.example.myapp.MyAPP”.

Change the Action to “download database” and press “Go”. The page will refresh.

Database files and API key

Click the “download your bot's database” link and save the file onto your computer (should end
in .db). Do the same for the “helper file” (should end in .dbe). The helper file is a memory dump
which helps your database load much more quickly. This page will also give you your API key.

For Android, copy your database and helper files into the /assets/ directory of your app. If either
file is over IMb (which it will be if you have included any Clever Data), then you must add “.jpg”
to the end of each file. For example, rename mybot.db to mybot.db.jpg and mybot.dbe to
mybot.dbe.jpg. This is the easiest way of telling Android not to try to compress the files (which is
limited to files up to 1Mb). Do not otherwise change the filename of your bot as it is also tied to
your API key. Now use the setLocation function to tell the API where your database is. For Android,
the location is relative to the /assets/ folder, so leave off the /assets/ and the .jpg is optional:
cs.setLocation ("mybot.db");

Android apps are written to one large .apk file. So before your bot's database can be used it is
copied out of the /assets/ part of the .apk file and placed into local internal starge. If you have
external storage available, you can bypass this by passing in an absolute path starting with / such
as /mnt/sdcard/myapp/mybot.db.

For iOS, add the db and dbe file together to your app. Then call setLocation. The location must be a
full path name, such as:

NSString* filePath = [[NSBundle mainBundle] pathForResource: (@ "mybot" of lype:(@"db"];

[cs setLocation:filePath];

If you run your app with just that, your bot should reply “invalid API key”. So you should also call
setApiKey with the API key from the previous step. Then sendMessage should return a proper reply.

In real use, you probably want to call loadDatabase separately from sendMessage when your app

first loads. And both should be run asynchronously in the background as they can take a few
hundred milliseconds or more.

73 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

Debugging

If you call setDebugLevel(1) the Cleverscript API will send debugging messages to the log. Higher
numbers give more debugging information from inside the API. In Android, it goes into the “info”
log of LogCat with the tag CSANDROID. 10S adds to the general NSLog.

The bot's reply also contains minimal error reporting (for database and API key problems). The
loadDatabase function can be called separately from sendMessage and has a return value which
gives some error information as described below.

API functions

The API provides several other methods for getting and setting Cleverscript variables, and saving
and restoring conversations. Here is a full list of what the API can do. For iOS the API accepts
NSString* rather than String.

new CleverscriptAPI (Context yourcontext): For Android only, you must pass in your
application's context to the Cleverscript API constructor.

void getVersion(): Returns an integer version number of the API.

void setDebuglLevel (int level): Pass in a debug level between 0 and 4 to see various error
messages. These are mostly the same messages that you can see while chatting to your bot
on the Cleverscript website.

void setLocation (String location): Specify the location of your database. For Android, leave
off the /assets/ and optionally the .jpg. For i10S pass in the full path name from
pathForResource.

void setApiKey (String apikey): Specity your bot's API key (about 30 characters long).

int loadDatabase(): this extracts the db and dbe files from the app's apk file, puts them into
internal storage, and then loads their contents into memory. Note that your bot will still work
without the dbe file, but the loading will take much longer. It returns:

© 0: successful

o -1000: no database location provided

© -1001: could not find or open database db file (check you added .jpg to the file names)

© -1002: could not copy db file to internal storage

© any other number < 0: internal error, the bot's reply should give more details

void unloadDatabase(): The Cleverscript API loads all data into memory, this unloads it all.
String sendMessage (String input): If the database has not already been loaded, then this will
call loadDatabase and then send the input to your bot and return the reply. If the database
has not been specified, has the wrong API key, or has not loaded correctly, then the reply
will contain an error message.

void clearConversation(): The Cleverscript API keeps its own internal log of the
conversation and uses it to influence Clever Data replies contextually. This clears the log.
void addInteraction (String user, String bot): Once cleared, you can load in a previously
saved conversation line-by-line with this function, providing each user input and bot reply.
Though a better way to load old conversations is with assignBotState.

String retrieveVariable (String variableName): Returns the requested Cleverscript variable.
If the variable has never been defined inside your bot and is not dynamic like
myvariable{myindex/, this will return null. Variables are defined by appearing at least once
in the If or Learn columns.

void assignVariable (String variableName, String variableValue): Assigns a value to a
variable within Cleverscript. Note that variable values are not stored permanently. They are
only kept in memory while the app is running and will be reset whenever the app restarts. As
with retrieveVariable, you can also only assign variables which have been previously
defined within your bot, or are dynamic.

74 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

» String retrieveBotState(): Returns a string containing the state of the bot, which is an
encoded version of all the variables and the conversation history. This can be saved and later
given to assignBotState (including the cs=) to restart a previous conversation.

* void assignBotState (state): Used to restart a previous conversation from a state string
previously retrieved with retrieveBotState. You can also pass in variable overrides by adding
things like myvar=value, with newlines between each.

* String retreiveSessionld(): Returns the Cleverscript session ID variable, which is string
about 10 characters long, randomly created at the beginning of a conversation.

Two extra functions are available for iOS only from October 2014:
* void setDebugFile (String location): Outputs all debugging messages to the given file.
* void setMemoryLimitMB (int megabytes): Set a limit on the approximate number of
megabytes that the API can use. Applies only when loading Clever Data.

Emotional Data
We can also enable emotion functionality in your API and database. This will provide you with the
following additional functions:

* void sendMessageForExpressionValues (String input): Just compute the expression values
(reaction and emotion) for a given input, without replying. You can get the emotion data
back out by retrieving Cleverscript variables, such as retrieveVariable("emotion values").

* void matchExpressionValues (String input): Pass in a comma separated list of emotion
values such as 0,0,0,0,100,0,0. The numbers refer to the seven basic emotions: anger, fear,
disgust, contempt, joy, sadness, surprise. This also works with the reactions and emotions
built into Cleverscript such as “happy”. Call this before calling sendMessage to influence
the bot's reply.

Here is an example of using this functionality in Android to get the emotional values for a piece of
text. The variable emotions will be a string representing the seven basic emotions such as
“0,0,0,0,50,0,0”. Please note that guessing emotions from text is imprecise and approximate:
cs.sendMessageForExpressionValues ("l am going to eat lunch."”);

String emotions = cs.retrieveVariable ("emotion_values");

And here is a corresponding example for influencing the bot's reply by passing in basic emotion
values. This will favour an angry reply. Please note that influencing the reply is also approximate as
there are many other factors affecting it as well:

cs.matchExpressionValues ("100,0,0,0,0,0,0");

String reply = cs.sendMessage ("How are you doing?");

75 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

8.10 — Self Hosting

Subject to a licensing agreement and pre-payment, you can host our software yourself. Once agreed,
we will send you an executable which will run as a mini web server and accept and respond to
JSON requests. When downloading your bot's database, you will need to answer the question
“Where will you use this bot” with “self-hosted”.

For example, in Linux you can run it as:
CleverscriptSelfHostedWebServer.out mybot.db -key YOUR_API KEY -wp 9000

This starts a web server on port 9000 associated with the database file and API key retrieved from
the Publish page of the Cleverscript website.

You can then communicate with your bot using the same JSON techniques as described above. You
have to make the request to your own server on the given port. Request the URL /json followed by
a ?. For example, making a request to:

http://myserver.com:9000/json?key=YOUR_API KEY

&cs=YOUR_CS VARIABLE&input=Hi&callback=CSProcess

Will return something like:
CSProcess ({"input": "Hi", ...});

To call this directly from Javascript:
<script type="text/javascript” src="http://myserver.com:9000/json?key=YOUR_API KEY
&cs=YOUR_CS VARIABLE&input=Hi&callback=CSProcess"></script>

Or you can use our Javascript library. Note that you don't have to pass in an API key.

<script type="text/javascript”
srce="http://www.cleverscript.com/CSL/cleverscriptapi.js"></script>

<script type="text/javascript">ShowCleverscriptForm (", {server:'http.://myserver.com:9000/json’,
debug:2});</script>

The web server can also reply with XML if you call the URL:
http://myserver.com:9000/xml?cs=YOUR _CS VARIABLE&input=Hi&callback=CSProcess

Once running the web server can only be shutdown nicely by visiting:
http.//myserver.com:9000/shutdown?botname=mybot&key=YOUR_API KEY

Please note that other than the API key check, anybody could connect to this URL and chat to your
bot.

76 www.cleverscript.com / www.existor.com

http://www.cleverscript.com/
http://www.existor.com/

